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FOREWORD

A major goal of the Center on Continuous Instruc-
tional Improvement (CCII) is to promote the use of
research to improve teaching and learning. In pursuit
of that goal, CCII is assessing, synthesizing and
disseminating findings from research on learning
progressions, or trajectories, in mathematics, science,
and literacy, and promoting and supporting further
development of progressions as well as research on
their use and effects. CCII views learning progres-
sions as potentially important, but as yet unproven,
tools for improving teaching and learning, and
recognizes that developing and utilizing this potential
poses some challenges. This is the Center’s second
report; the first, Learning Progressions in Science: An
Evidence-based Approach to Reform, by Tom Corcoran,
Frederic A. Mosher, and Aaron Rogat was released

in May, 2009.

First and foremost, we would like to thank Pearson
Education and the William and Flora Hewlett
Foundation for their generous support of CCII’s
work on learning progressions and trajectories in
mathematics, science, and literacy. Through their
continued support, CCII has been able to facilitate
and extend communication among the groups that
have an interest in the development and testing of
learning trajectories in mathematics.

CCII initiated its work on learning trajectories in
mathematics in 2008 by convening a working group
of scholars with experience in research and develop-
ment related to learning trajectories in mathematics
to review the current status of thinking about the
concept and to assess its potential usefulness for
instructional improvement. The initial intention was
to try to identify or develop a few strong examples
of trajectories in key domains of learning in school
mathematics and use these examples as a basis for
discussion with a wider group of experts, practitio-
ners, and policymakers about whether this idea has
promise, and, if so, what actions would be required to
realize that promise. However, as we progressed, our
work on learning progressions intersected with the
activities surrounding the initiative of the Council of
Chief State School Officers (CCSSO), and the
National Governors Association (NGA) to recruit
most of the states, territories, and the District of
Columbia to agree to develop and seriously consider
adopting new national “Common Core College and
Career Ready” secondary school leaving standards
in mathematics and English language arts. This

process then moved on to the work of mapping those
standards back to what students should master at
each of the grades K through 12 if they were to be
on track to meeting those standards at the end of
secondary school. The chair of CCII’s working group
and co-author of this report, Phil Daro, was recruited
to play a lead role in the writing of the new CCSS,
and subsequently in writing the related K-12
year-by-year standards.

Given differences in perspective, Daro thought it
would be helpful for some of the key people leading
and making decisions about how to draft the CCSS
for K-12 mathematics to meet with researchers who
have been active in developing learning trajectories
that cover significant elements of the school math-
ematics curriculum to discuss the implications of the
latter work for the standards writing effort.

This led to a timely and pivotal workshop attended
by scholars working on trajectories and representa-
tives of the Common Core Standards effort in
August, 2009. The workshop was co-sponsored by
CCII and the DELTA (Diagnostic E-Learning
Trajectories Approach) Group, led by North Carolina
State University (NCSU) Professors Jere Confrey
and Alan Maloney, and hosted and skillfully orga-
nized by the William and Ida Friday Institute for
Educational Innovation at NCSU The meeting
focused on how research on learning trajectories
could inform the design of the Common Core
Standards being developed under the auspices of the
Council of Chief State School Officers (CCSSO)
and the National Governor’s Association (NGA).

One result of the meeting was that the participants
who had responsibility for the development of the
CCSS came away with deeper understanding of the
research on trajectories and a conviction that they had
promise as a way of helping to inform the structure of
the standards they were charged with producing.
Another result was that many of the members of the
CCII working group who participated in the meeting
then became directly involved in working on and
commenting on drafts of the proposed standards.
Nevertheless we found the time needed for further
deliberation and writing sufficient to enable us to put
together this overview of the current understanding
of trajectories and of the level of warrant for their use.
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We are deeply indebted to the CCII working group
members for their thoughtful input and constructive
feedback, chapter contributions, and thorough reviews
to earlier drafts of this report. The other working
group members (in alphabetical order) include:

Michael Battista, Ohio State University

Jeftrey Barrett, Illinois State University

Douglas Clements, SUNY Buffalo
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Marge Petit, Marge Petit Consulting, MPC
Julie Sarama, SUNY Buffalo

Yan Liu, Consultant

We would also like to thank the key leaders and
developers who participated in the co-sponsored
August 2009 workshop. Participants, in alphabetical

order, include:

Jeft Barrett, Illinois State University

Michael Battista, Ohio State University

Sarah Berenson, UNC-Greensboro

Douglas Clements, SUNY Buffalo

Jere Confrey, NCSU

Tom Corcoran, CPRE Teachers College, Columbia

University

Phil Daro, SERP
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We also would like to express our gratitude to Martin
Simon, New York University; Leslie Stefte, University
of Georgia; and Karen Fuson, Northwestern Univer-
sity, for their responses to a request for input we sent
out to researchers in this field, and in the case of
Simon, for his extended exchange of views on these
issues. They were extremely helpful to us in clarifying
our thinking on important issues, even though they
may not fully accept where we came out on them.

Last but not least, we must recognize the steadfast
support and dedication from our colleagues in
producing this report. Special thanks to Vinci Daro
and Wakasa Nagakura for their skillful editing and
invaluable feedback throughout the writing process.
Special thanks to Kelly Fair, CPRE’s Communication
Manager, for her masterful oversight of all stages of
the report’s production.
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FOREWORD

'This report aims to provide a useful introduction to
current work and thinking about learning trajectories
for mathematics education; why we should care about
these questions; and how to think about what is being
attempted, casting some light on the varying, and
perhaps confusing, ways in which the terms trajectory,
progression, learning, teaching, and so on, are being
used by us and our colleagues in this work.

Phil Daro, Frederic A. Mosher, and Tom Corcoran
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EXECUTIVE SUMMARY

There is a leading school of thought in American
education reform circles that basically is agnostic
about instruction and practice. In its purest form,

it holds that government agencies shouldn't try to
prescribe classroom practice to frontline educators.
Rather, the system should specify the student
outcomes it expects and hold teachers and schools
accountable for achieving those outcomes, but leave
them free to figure out the best ways to accomplish
those results. This is sometimes framed as a trade

off of increased autonomy or empowerment in
return for greater accountability. A variation on this
approach focuses on making structural and governance
modifications that devolve authority for instructional
decisions to local levels, reduce bureaucratic rules and
constraints—including the constraints of collective
bargaining contracts with teachers’ unions—and
provide more choice to parents and students, opening
the system to market forces and incentives, also
constrained only by accountability for students’
success. A different version of the argument seems

to be premised on the idea that good teachers are
born not made, or taught, and that the system can

be improved by selecting and keeping those teachers
whose students do well on assessments, and by
weeding out those whose students do less well,
without trying to determine in detail what the
successful teachers do, as one basis for learning how
to help the less successful teachers do better.

This agnosticism has legitimate roots in a recognition
that our current knowledge of effective instructional
practices is insufficient to prescribe precisely the
teaching that would ensure that substantially all
students could reach the levels of success in the core
school subjects and skills called for in the slogan
“college and career ready.” CCII doesn’t, however,
accept the ideas that we know nothing about effective
instruction, or that it will not be possible over time to
develop empirical evidence concerning instructional
approaches that are much more likely to help most
students succeed at the hoped-for levels. It seems to
us that it would be foolish not to provide strong
incentives or even requirements for teachers to use
approaches based on that knowledge, perhaps with
provisions for waivers to allow experimentation to
find even better approaches. Conversely, it is not
reasonable, or professional, to expect each teacher
totally to invent or re-invent his or her own approach
to instruction for the students he or she is given to teach.

To illustrate the scope of the problem facing Ameri-
can schools, a recent study by ACT Inc. (2010)
looked at how 11%-grade students in five states that
now require all students to take ACT’s assessments
(as opposed to including only students who are
applying to college) did on the elements of their
assessments that they consider to be indicative of
readiness to perform effectively in college. They offer
this as a rough baseline estimate of how the full
range of American students might perform on new
assessments based on the common core standards
being developed by the two “race to the top” state
assessment consortia. The results were that the
percentage of all students who met ACT’s proxy for
college ready standards ranged from just over 30% to
just over 50% for key subjects, and for African-Amer-
ican students it fell to as low as under 10% on some
of the standards. The percentages for mathematics
tended to be the lowest for any of the subjects tested.
And these results are based on rather conventional
assessments of college readiness, not performance
items that require open-ended and extended effort,
or transfer of knowledge to the solution of new and
wide-ranging problems, which would be even more
challenging reflections of the larger ambitions of
common core reforms.

'This study is useful in forcing us to attend to another
of our education “gaps”—the gap between the
ambitious goals of the reform rhetoric and the actual
levels of knowledge and skill acquired by a very large
proportion of American secondary school students—
and the problem is not limited to poor and minority
students, though it has chronically been more serious
for them. Closing this gap will not be a trivial
undertaking, and it will not happen in just a few
years, or in response to arbitrary timetables such as
those set by the NCLB legislation or envisioned by
the Obama administration. A great many things will
have to happen, both inside and outside of schools,
if there is to be any hope of widespread success in
meeting these goals. Certainly that should include
policies that improve the social and economic
conditions for children and families outside of school,
and in particular, families’ ability to support their
children’s learning and to contribute directly to it.
Nevertheless, it also is clear that instruction within
schools will have to become much more responsive
to the particular needs of the students they serve.
If substantially all students are to succeed at the
hoped-for levels, it will not be sufficient just to meet

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction
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the “opportunity to learn” standard of equitably
delivering high- quality curricular content to all
students, though that of course is a necessary step.
Since students’learning, and their ability to meet
ambitious standards in high school, builds over
time—and takes time—if they are to have a reason-
able chance to make it, their progress along the path
to meeting those standards really has to be monitored
purposefully, and action has to be taken whenever it
is clear that they are not making adequate progress.
When students go off track early, it is hard to bet on
their succeeding later, unless there is timely intervention.

The concept of learning progressions offers one
promising approach to developing the knowledge
needed to define the “track” that students may be on,
or should be on. Learning progressions can inform
teachers about what to expect from their students.
They provide an empirical basis for choices about
when to teach what to whom. Learning progressions
identify key waypoints along the path in which
students’ knowledge and skills are likely to grow and
develop in school subjects (Corcoran, Mosher, &
Rogat, 2009). Such waypoints could form the
backbone for curriculum and instructionally mean-
ingful assessments and performance standards. In
mathematics education, these progressions are more
commonly labeled learning trajectories. These
trajectories are empirically supported hypotheses
about the levels or waypoints of thinking, knowledge,
and skill in using knowledge, that students are likely
to go through as they learn mathematics and, one
hopes, reach or exceed the common goals set for their
learning. Trajectories involve hypotheses both about
the order and nature of the steps in the growth of
students’ mathematical understanding, and about the
nature of the instructional experiences that might
support them in moving step by step toward the goals
of school mathematics.

The discussions among mathematics educators that
led up to this report made it clear that trajectories are
not a totally new idea, nor are they a magic solution
to all of the problems of mathematics education. They
represent another recognition that learning takes
place and builds over time, and that instruction has to
take account of what has gone before and what will
come next. They share this with more traditional
“scope and sequence” approaches to curriculum devel-
opment. Where they differ is in the extent to which
their hypotheses are rooted in actual empirical study
of the ways in which students’ thinking grows in re-
sponse to relatively well specified instructional experi-
ences, as opposed to being grounded mostly in the
disciplinary logic of mathematics and the conven-

tional wisdom of
practice. By focusing
on the identification
of significant and
recognizable clusters
of concepts and con-
nections in students’
thinking that repre-
sent key steps for-
ward, trajectories
offer a stronger basis
for describing the
interim goals that
students should meet
if they are to reach
the common core
college and career
ready high school
standards. In addi-
tion, they provide

By focusing on the identification of
significant and recognizable clusters
of concepts and connections in
students’ thinking that represent key
steps forward, trajectories offer a
stronger basis for describing the
interim goals that students should
meet if they are to reach the common
core college and career ready high
school standards. In addition, they
provide understandable points of
reference for designing assessments
for both summative and formative
uses that can report where students
are in terms of those steps, rather
than reporting only in terms of
where students stand in comparison
with their peers.

understandable points of reference for designing
assessments for both summative and formative

uses that can report where students are in terms of
those steps, rather than reporting only in terms of
where students stand in comparison with their peers.
Reporting in terms of scale scores or percentiles does
not really provide much instructionally useful feedback.

However, in sometimes using the language of
development, descriptions of trajectories can give the
impression that they are somehow tapping natural or
inevitable orders of learning. It became clear in our
discussions that this impression would be mistaken.
There may be some truth to the idea that in the very
early years, children’s attention to number and
quantity may develop in fairly universal ways (though
it still will depend heavily on common experiences
and vary in response to cultural variations in experi-
ence), but the influence of variations in experience, in
the affordances of culture, and, particularly, in instruc-
tional environments, grows rapidly with age. While
this influence makes clear that there are no single or
universal trajectories of mathematics learning,
trajectories are useful as modal descriptions of the
development of student thinking over shorter ranges
of specific mathematical topics and instruction, and
within particular cultural and curricular contexts—
useful as a basis for informing teachers about the
(sometimes wide) range of student understanding
they are likely to encounter, and the kinds of peda-
gogical responses that are likely to help students
move along.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction
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Most of the current work on trajectories, as described
in this report, has this shorter term topical character.
That is, they focus on a particular mathematical con-
tent area—such as number sense or measurement—
and how learning in these areas develops over a few
grades. These identified trajectories typically are
treated somewhat in isolation from the influence of
what everyone recognizes are parallel and ongoing
trajectories for other mathematical content and
practices that surely interact with any particular
trajectory of immediate concern. The hope is that
these delimited trajectories will prove to be useful to
teachers in their day-to-day work, and that the
interactions with parallel trajectories will prove to be
productive, if arranged well in the curriculum. From
the perspective of policy and the system, it should
eventually be possible to string together the growing
number of specific trajectories where careful empirical
work is being done, and couple them with curriculum
designs based on the best combinations of disciplin-
ary knowledge, practical experience, and ongoing
attention to students’ thinking that we can currently
muster, to produce descriptions of the key steps in
students’ thinking to be expected across all of the
school mathematics curriculum. These in turn

can then be used to improve current standards and
assessments and develop better ones over time as

our empirical knowledge also improves.

The CCII Panel has discussed these issues, and the
potential of learning trajectories in mathematics, the
work that has been done on them, the gaps that exist
in this work, and some of the challenges facing
developers and potential users. We have concluded
that learning trajectories hold great promise as tools
for improving instruction in mathematics, and they
hold promise for guiding the development of better
curriculum and assessments as well. We are agreed
that it is important to advance the development of
learning trajectories to provide new tools for teachers
who are under increasing pressure to bring every
child to high levels of proficiency.

With this goal in mind, we offer the following
recommendations:

e Mathematics educators and funding agencies
should recognize research on learning trajecto-
ries in mathematics as a respected and impor-
tant field of work.

Funding agencies and foundations should
initiate new research and development projects
to fill critical knowledge gaps. There are major
gaps in our understanding of learning trajectories in
mathematics. These include topics such as:

» Algebra

» Geometry

» Measurement

» Ratio, proportion and rate

» Development of mathematical reasoning

An immediate national initiative is needed to
support work in these and other critical areas in
order to fill in the gaps in our understanding.

Work should be undertaken to consolidate
learning trajectories. For topics such as counting,
or multiplicative thinking, for example, different
researchers in mathematics education have
developed their own learning trajectories and
these should be tested and integrated.

Mathematics educators should initiate work on
integrating and connecting across trajectories.

Studies should be undertaken of the develop-
ment of students from different cultural
backgrounds and with differing initial skill

levels.

The available learning trajectories should be
shared broadly within the mathematics educa-
tion and broader R & D communities.

The available learning trajectories should be
translated into usable tools for teachers.

Funding agencies should provide additional
support for research groups to validate the
learning trajectories they have developed so they
can test them in classroom settings and demon-
strate their utility.

Investments should be made in the development
of assessment tools based on learning trajecto-
ries for use by teachers and schools.

There should be more collaboration among
mathematics education researchers, assessment
experts, cognitive scientists, curriculum and
assessment developers, and classroom teachers.

And, finally as we undertake this work, it is
important to remember that it is the knowledge
of the mathematics education research that will
empower teachers, not just the data from the
results of assessments.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction
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It is a staple of reports on American students’
mathematics learning to run through a litany of
comparisons with the performance of their peers
from around the world, or to the standards of
proficiency set for our own national or state assess-
ments, and to conclude that we are doing at best a
mediocre job of teaching mathematics. Our average
performance falls in the mid range among nations;
the proportion of high performers is lower than it is
in many countries that are our strongest economic
competitors; and we have wide gaps in performance
among variously advantaged and disadvantaged
groups, while the proportion of the latter groups in
our population is growing.

All of this is true. But it also is true that long term
NAEP mathematics results from 1978 to 2008
provide no evidence that American students’ perfor-
mance is getting worse, and the increasing numbers
of students who take higher level mathematics
courses in high school (Advanced Placement,
International Baccalaureate, and so on) imply that the
number of students with knowledge of more ad-
vanced mathematical content should be increasing
(The College Board, n.d.; Rampey, Dion, & Donahue,
2009). With a large population, the absolute number
of our high performers is probably still competitive
with most of our rivals, but declines in the number of
students entering mathematics and engineering
programs require us to recruit abroad to meet the
demand for science, mathematics, engineering, and
technology graduates. Nevertheless, what has changed
is that our rivals are succeeding with growing
proportions of their populations, and we are now
much more acutely aware of how the uneven quality
of K-12 education and unevenly distributed opportu-
nities among groups in our society betray our values
and handicap us in economic competition. So our
problems are real. We should simply stipulate that.

The prevalent approach to instruction in our schools
will have to change in fairly fundamental ways, if we
want “all” or much higher proportions of our students
to meet or exceed standards of mathematical under-
standing and skill that would give them a good
chance of succeeding in further education and in the
economy and polity of the 21st century. The Common
Core State Standards (CCSS) in mathematics
provide us with standards that are higher, clearer, and
more focused than those now set so varyingly by our

states under No Child Left Behind (NCLB); if they

are adopted and implemented by the states they will
undoubtedly provide better guidance to education
leaders, teachers, and students about where they
should be heading. But such standards for content
and performance are not in themselves sufficient to
ensure that actions will be taken to help most
students reach them. For that to happen, teachers are
going to have to find ways to attend more closely and
regularly to each of their students during instruction
to determine where they are in their progress toward
meeting the standards, and the kinds of problems
they might be having along the way. Then teachers
must use that information to decide what to do to
help each student continue to progress, to provide
students with feedback, and help them overcome
their particular problems to get back on a path toward
success. In other words, instruction will not only have
to attend to students’ particular needs but must also
adapt to them to try to get—or keep—them on track
to success, rather than simply se/ecting for success
those who are easy to teach, and leaving the rest
behind to find and settle into their particular niches
on the normal grading “curve.” This is what is known
as adaptive instruction and it is what practice must
look like in a standards-based system.

There are no panaceas, no canned programs, no
technology that can replace careful attention and
timely interventions by a well-trained teacher who
understands how children learn mathematics, and
also where they struggle and what to do about it.

But note that, to adapt, a teacher must know how to
get students to reveal where they are in terms of
what they understand and what their problems might
be. They have to have specific ideas of how students
are likely to progress, including what prerequisite
knowledge and skill they should have mastered,
and how they might be expected to go off track or
have problems. And they would need to have, or
develop, ideas about what to do to respond helpfully
to the particular evidence of progress and problems
they observe.

This report addresses the question of where these

ideas and practices that teachers need might come
from, and what forms they should take, if they are
to support instruction in useful and effective ways.

Ideally, teachers would learn in their pre-service
courses and clinical experiences most of what they
need to know about how students learn mathematics.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction
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It would help if those courses and experiences
anticipated the textbooks, curriculum materials, and
instructional units the teachers would likely be using
in the schools where they will be teaching, so that
explicit connections could be made between what
they were learning about students’ cognitive develop-
ment and mathematics learning and the students they
will be teaching and the instructional materials they
will be using. This is how it is done in Singapore,
Finland, and other high-performing countries. In
America this is unlikely to happen, because of the
fragmented governance and institutional structure,
the norms of autonomy and academic freedom in
teacher training institutions, and the “local control”
bias in the American system. Few assumptions can
be made ahead of time about the curriculum and
materials teachers will be expected to use in the
districts or schools where they will end up teaching,
and if valid assumptions can be made, faculty may
resist preparing teachers for a particular curriculum.
Perhaps for these reasons, more attention is some-
times given in teacher training institutions to
particular pedagogical styles or approaches than to
the content and sequencing of what is to be taught.
In addition, perhaps because of the emphasis on
delivery of content without a concomitant focus

on what to do if the content is not learned, little
attention has been given to gathering empirical
evidence, or collecting and warranting teacher lore,
that could provide pre-service teachers with trustwor-
thy suggestions about how they might tell how a
student was progressing or what specific things might
be going wrong; and, even less attention has been
given to what teachers might do about those things
if they spot them.

Given all this, novice teachers usually are left alone
behind their closed classroom doors essentially to
make up the details of their own curriculum—
extrapolating from whatever the district-or school-
adopted textbook or mathematics program might
offer—and they are told that this opportunity for
“creativity” reflects the essence of their responsibility
as “professionals.””’

But this is a distorted view of what being professional
means. To be sure, professionals value (and vary in)
creativity, but what they do—as doctors, lawyers, and,

we should hope, teachers—is supposed to be rooted
in a codified body of knowledge that provides them
with pretty clear basic ideas of what to do in response
to the typical situations that present themselves

in their day to day practice. Also, what they do is
supposed to be responsive to the particular needs

of their clients. Our hypothesis is that in American
education the modal practice of delivering the
content and expecting the students to succeed or fail
according to their talent or background and family
support, without taking responsibility to track
progress and intervene when students are known to
be falling behind has undermined the development
of a body of truly professional knowledge that could
support more adaptive responses to students’ needs.
This problem has been aggravated by the fact that
American education researchers tend to focus on
the problems that interest them, not necessarily
those that bother teachers, and have not focused on
developing knowledge that could inform adaptive
instructional practice.

Pieces of the necessary knowledge are nevertheless
available, and the standards-based reform movement
of the last few decades is shifting the norms of
teaching away from just delivering the content and
towards taking more responsibility for helping all
students at least to achieve adequate levels of
performance in core subjects. The state content
standards, as they have been tied to grade levels, can
be seen as a first approximation of the order in which
students should learn the required content and skills.
However, the current state standards are more
prescriptive than they are descriptive. They define the
order in which, and the time or grade by which,
students should learn specific content and skills as
evidenced by satisfactory performance levels. But
typically state standards have not been deeply rooted
in empirical studies of the ways children’s thinking
and understanding of mathematics actually develop in
interaction with instruction.” Rather they usually
have been compromises derived from the disciplinary
logic of mathematics itself, experience with the ways
mathematics has usually been taught, as reflected in
textbooks and teachers’ practical wisdom, and
lobbying and special pleading on behalf of influential
individuals and groups arguing for inclusion of
particular topics, or particular ideas about “reform”

1

The recent emphasis on strict curricular “pacing” in many districts that are feeling “adequate annual progress” pressures from NCLB might

seem to be an exception, because they do involve tighter control on teachers’ choices of the content to be taught, but that content still varies
district by district, and teachers still are usually left to choose how they will teach the content. In addition, whole-class pacing does limit

teachers’ options for responding to individual students’ levels of progress.

2

mathematics to revise their standards.

This is also changing, and a number of states have recently used research on learning progressions in science and learning trajectories in
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or “the basics.” Absent a strong grounding in re-
search on student learning, and the efficacy of
associated instructional responses, state standards
tend at best to be lists of mathematics topics and
some indication of when they should be taught grade
by grade without explicit attention being paid to how
those topics relate to each other and whether they
offer students opportunities over time to develop

a coherent understanding of core mathematical
concepts and the nature of mathematical argument.
The end result has been a structure of standards and
loosely associated curricula that has been famously
described as being “a mile wide and an inch deep”

(Schmidt et al., 1997).

Of course some of the problems with current
standards could be remedied by being even more
mathematical—that is, by considering the structure
of the discipline and being much clearer about which
concepts are more central or “bigger,” and about how
they connect to each other in terms of disciplinary
priority. A focus on what can be derived from what
might yield a more coherent ordering of what should
be taught. And recognizing the logic of that ordering
might lead teachers to encourage learning of the
central ideas more thoroughly when they are first
encountered, so that those ideas don'’t spread so
broadly and ineffectively through large swaths of the
curriculum. But even with improved logical coher-
ence, it is not necessarily the case that all or even
most students will perceive and appreciate that
coherence. So, there still is the issue of whether the
standards should also reflect what is known about the
ways in which students actually develop understand-
ing or construe what they are supposedly being
taught, and whether, if they did, such standards might
come closer to providing the kind of knowledge

and support we have suggested teachers will need if
they are to be able to respond effectively to their
students’ needs.

Instruction, as Cohen, Raudenbush, and Ball (2003)
have pointed out, can be described as a triangular
relationship involving interactions among a teacher or
teaching; a learner; and the content, skills, or material
that instruction is focused on. Our point is that the
current standards tend to focus primarily on the

content side of the triangle. They would be more
useful if they also took into account the ways in
which students are likely to learn them and how that
should influence teaching. Instruction is clearly a
socially structured communicative interaction in
which the purpose of one communicator, the teacher,
obviously, is to tell, show, arrange experiences, and
give feedback so that the students learn new things
that are consistent with the goals of instruction.’

As with all human beings, students are always
learning in that they are trying to make sense of
experience in ways that serve their purposes and
interests. Their learning grows or progresses, at least
in the sense of accretion—adding new connections,
perceptions, and expectations—but whether it
progresses in the direction of the goals of instruction
as represented by standards, and at the pace the
standards imply, is uncertain, and that is the fun-
damental problem of instruction in a standards-

based world.

So, what might be done to help teachers coordinate
their efforts more effectively with students’ learning?
What is needed to ensure that the CCSS move us
toward the aspirations of the standards movement,
an education system capable of achieving both
excellence and equity?

Over the past 20 years or so the process of “formative
assessment” has attracted attention as a promising
way to connect teaching more closely and adaptively
to students’ thinking (Sadler, 1989; Black & Wiliam,
1998). Formative assessment involves a teacher in
seeking evidence during instruction (evidence from
student work, from classroom questions and dialog

or one-on-one interviews, sometimes from using
assessment tools designed specifically for the purpose,
and so on) of whether students are understanding and
progressing toward the goals of instruction, or
whether they are having difficulties or falling off track
in some way, and using that information to shape
pedagogical responses designed to provide students
with the feedback and experiences they may need to
keep or get on track. This is not a new idea; it is what
coaches in music, drama, and sports have always done.
Studies of the use of formative assessment practices
(Black & Wiliam, 1998; National Mathematics

We favor the view that students are active participants in their learning, bringing to it their own theories or cognitive structures (sometimes
called “schemes” or “schemata” in the cognitive science literature) on what they are learning and how it works, and assimilating new experience
into those theories if they can, or modifying them to accommodate experiences that do not fit. Their theories also may evolve and generalize
based on their recognition of and reflection on similarities and connections in their experiences, but just how these learning processes work is an
issue that requires further research (Simon et al., 2010). We would not, however, carry this view so far as to say that students cannot be told
things by teachers or learn things from books that will modify their learning (or their theories)—that they have to discover everything for
themselves. A central function of telling and showing in instruction is presumably to help to direct attention to aspects of experience that

Stl,ld(lllts7 thC()l’iCS can ﬂSSiﬂlilﬂtC or accommodatc to in constructive ways.
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Advisory Panel, 2008) indicate that they can have
quite promising effects on improving students’
outcomes, but they also suggest that in order to work
well they require that teachers have in mind theories
or expectations about how students’ thinking will
change and develop, what problems they are likely to
face, and what kinds of responses from the teacher are
likely to help them progress. This in turn has led some
to turn their attention to developing empirically
testable and verifiable theories to increase our
understanding, in detail, about the ways that students
are most likely to progress in their learning of
particular subjects that could provide the understand-
ing teachers need to be able to interpret student
performance and adapt their teaching in response.

This brings us to the idea of “learning progressions,”
or, as the concept more often is termed in the
mathematics education literature—"“learning trajecto-
ries.” These are labels given to attempts to gather and
characterize evidence about the paths children seem
to follow as they learn mathematics. Hypotheses
about the paths described by learning trajectories
have roots in developmental and cognitive psychology
and, more recently, developmental neuroscience.
These include roots in, for instance, Piaget’s genetic
epistemology which tried to describe the ways
children’s actions, thinking, and logic move through
characteristic stages in their understanding of the
world (Piaget, 1970) and Vygotsky’s description

of the “Zone of Proximal Educational Development”
that characterized the ways in which children’s
learning can be socially supported or “scaffolded”

at its leading edge and addressed the extent to

which individual learners may follow such supports
and reach beyond their present level of thinking
(Vygotsky, 1978).7 These attempts to describe how
children learn mathematics also are influenced by more
conventional “scope and sequence” approaches to
curriculum design, but in contrast to those approach-
es, they focus on seeking evidence that students’
understanding and skill actually do develop in the
ways they are hypothesized to, and on revising those
hypotheses if they don't.

The first use of the term “learning trajectory” as
applied to mathematics learning and teaching seems
to have been by Martin Simon in his 1995 paper
(Reconstructing Mathematics Pedagogy from a
Constructivist Perspectiw) reporting his own work

as a researcher/teacher with a class of prospective
teachers. The paper is a quite subtle treatment of the
issues we have tried to describe above, in that his
concern is with how a teacher teaches if he does not
expect simply to tell students how to think about a
mathematical concept, but rather accepts responsibil-
ity for trying to check on whether they are in fact
understanding it, and for arranging new experiences
or problems designed to help them move toward
understanding, if they are not. This engages him
directly in the relationships among his goals for the
students, what he thinks they already understand, his
ideas about the kinds of tasks and problems that
might bring them to attend to and comprehend the
new concept, and an ongoing process of adjustment
or revision and supplementation of these expectations
and tasks as he tries them with his students and
observes their responses. Simon used the term
“hypothetical learning trajectory” to refer to the fram-
ing of a teacher’s lesson plan based on his reasoned
anticipation of how students’ learning might be
expected to develop towards the goal(s) of the lesson,
based on his own understanding of the mathematics
entailed in the goal(s), his knowledge of how other
students have come to understand that mathematics,
his estimates of his students’ current (range of)
understanding, and his choice of a mathematical task
or sequence of tasks that, as students work on them,
should lead them to a grounded understanding of the
desired concept(s) or skill(s). In summary, for Simon
a hypothetical learning trajectory for a lesson “is
made up of three components: the learning goal that
defines the direction, the learning activities, and the
hypothetical learning processes—a prediction of how
the students’ thinking and understanding will evolve
in the context of the learning activities” (Simon, 1995,
p- 136). The hypothetical trajectory asserts the
interdependence of the activities and the learning
processes.’

*Infant studies suggest that very young children have an essentially inborn capacity to attend to quantitative differences and equivalences, and
perhaps to discriminate among very small numbers (Xu, Spelke, & Goddard, 2005; Sophian, 2007), capacities that provide a grounding for
future mathematics learning. Detailed clinical interviews and studies that describe characteristic ways in which children’s understanding of
number and ability to count and do simple arithmetic develop (Gelman & Gallistel, 1986; Ginsburg, 1983; Moss & Case, 1999). Hypotheses
about trajectories also stem from the growing tradition of design experiments exploring the learning of other strands of mathematics (Clements,

Swaminathan, Hannibal, & Sarama, 1999).

5 It might have been clearer if Simon had used the term “hypothetical teaching or pedagogical trajectory,” or perhaps, because of the need to
anticipate the way the choices and sequence of teaching activities might interact with the development of students’ thinking or understanding,
they should have been called “teaching and learning trajectories,” or even “instructional trajectories” (assuming “instruction” is understood to
encompass both teaching and learning). There is a slight ambiguity in any case in talking about learning as having a trajectory. If learning is
understood as being a process, with its own mechanisms, it isn't learning per se that develops and has a trajectory so much as the products of
learning (thinking, or rather concepts, of increasing complexity or sophistication, skills, and so on) that do. But that is a minor quibble, reflecting
the varying connotations of “learning” (we won't try to address ideas about “learning to learn” here).
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While Simon’s trajectories were hypotheses about the
sequences of activities and tasks that might support
the development of students’ understanding of a
specific instructional goal, many of the researchers
and developers who have since adopted this language
to describe aspects of their work have clearly wanted
to apply the idea of trajectories to greater ranges

of the mathematics curriculum, and to goals and
sub-goals of varying grain size. In addition, as we
have implied leading in to this discussion, there are
many who have hopes that well-constructed and
validated trajectories might provide better descrip-
tions of how students’ mathematical understanding
and skill should develop over time. Such trajectories
could be used as a basis for designing more coherent
and instructionally useful standards, curricula,
assessments, and approaches to teacher professional
development.

It might help to look at an example. Clements and
Sarama (2004) offer a rather carefully balanced view:

we conceptualize learning trajectories as
descriptions of children’s thinking and
learning in a specific mathematical
domain, and a related conjectured route
through a set of instructional tasks
designed to engender those mental
processes or actions hypothesized to move
children through a developmental
progression of levels of thinking, created
with the intent of supporting children’s
achievement of specific goals in that
mathematical domain. (p.83)

Brief characterizations like this inevitably require
further specification and illustration before they
communicate fully, as Clements and Sarama well
know. Their definition highlights the concern with
the “specific goals” of teaching in the domain but
stresses that the problem of teaching is that it has

to take into account children’s current thinking,

and how it is that they learn, in order to design tasks
or experiences that will engage those processes of
learning in ways that will support them in proceeding
toward the goals the teachers set for them. Taking
into account children’s current thinking includes
identifying where their thinking stands in terms of
a developmental progression of levels and kinds of
thinking. Introducing the word “developmental”

doesn't at all imply that students’ thinking could
progress independently of experience, but it does
suggest that teaching needs to take into account
issues of timing and readiness (“maturation” is a word
that once would have been used). Progress is not only
or simply responsive to experience but will unfold
over time in an ordered way based on internal factors,
though this is likely to be contingent on the student’s
having appropriate experiences. The specific timing for
particular students may vary for both internal and
external reasons.

Clements and Sarama accept that one can legiti-
mately focus solely on studying the development of
students’ thinking or on how to order instructional
sequences, and that either focus can be useful, but
for them it is clear that the two are inextricably
related, at least in the context of schooling. They
really should be studied, and understood, together.

At this point we can only question whether the right
label for the focus of that joint study is “learning
trajectories,” or whether it should be something more
compound and complex to encompass both learning
and teaching, and whether there should be some
separate label for the aspects of development that are
significantly influenced by “internal” factors.’ Others
seem to have recognized this point. The recent
National Research Council (NRC) report on early
learning in mathematics (Cross, Woods, & Schwein-
gruber, 2009) uses the term, “teaching-learning paths’
for a related concept; and the Freudenthal program in
Realistic Mathematics Education, which has had a
fundamental impact on mathematics instruction and
policy in the Netherlands, uses the term “learning-
teaching trajectories,” (Van den Heuvel-Panguizen,
2008) so the nomenclature catches up with the
complexity of the concept in some places.

”

Organization of the Report. This report grew out of the
efforts of a working group originally convened by the
Center on Continuous Instructional Improvement
(CCII) to review the current status of thinking about
and development of the concept of learning progres-
sions or trajectories in mathematics education. Our
initial intention was to try to identify or develop a
few strong examples of trajectories in key domains of
learning in school mathematics, and to document the
issues that we faced in doing that, particularly in
terms of the kinds of warrant we could assert for the

6 “Trajectory” as a metaphor has a ballistic connotation—something that has a target, or at least a track, and an anticipated point of impact.
“Progression” is more agnostic about the end point—it just implies movement in a direction, and seems to fit a focus on something unfolding in
the mind of the student, wherever it may end up, and thus it might be better reserved for use with respect to the more maturational, internal, and
intuitive side of the equation of cognitive/thinking development. But it may well be too late to try to sort out such questions of nomenclature.
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examples we chose. We intended to use these
examples as a basis for discussion with a wider group
of experts, practitioners, and policymakers about
whether this idea has promise, and, if so, what else
would be required to realize that promise.

As our work proceeded, it ran into, or perhaps fell
into step with, the activities surrounding the initiative
of the Council of Chief State School Officers
(CCSSO), and the National Governors Association
(NGA) to recruit most of the states, territories, and
the District of Columbia to agree to develop and
seriously consider adopting new national “Common
Core College and Career Ready” secondary school
leaving standards in mathematics and English
language arts. This process then moved on to the
work of mapping those standards back to what
students should master at each of the grades K
through 12 if they were to be on track to meeting
those standards at the end of secondary school.

The chair of our working group, Phil Daro, was
recruited to play a lead role in the writing of the new
CCSS, and subsequently in writing the related K-12
year-by-year standards. He reflects on that experience
in Section V of this report.

It was clear that the concept of “mapping back” to
the K-12 grades from the college and career-ready
secondary standards implied some kind of progres-
sion or growth of knowledge and understanding

over time, and that therefore, the work on learning
trajectories ought to have something useful to say
about the nature of those maps and what the impor-
tant waypoints on them might be. Clearly there was a
difference between the approach taken to developing
learning trajectories, which begins with defining a
starting point based on children’s entering under-
standings and skills, and then working forward, as
opposed to logically working backwards from a set
of desired outcomes to define pathways or bench-
marks. The latter approach poses a serious problem
since we want to apply the new standards to all
students. It is certainly possible to map backwards

in a logical manner, but this may result in defining

a pathway that is much too steep for many children
given their entering skills, or that requires more
instructional time and support than the schools are
able to provide. It is also possible to work iteratively
back and forth between the desired graduation target
and children’s varied entry points, and to try to build
carefully scaffolded pathways that will help most
children reach the desired target, but this probably
would require multiple pathways and special attention
to children who enter the system with lower levels
of mathematical understanding.

Given these differences in perspective, Daro thought
it would be helpful for some of the key people leading
and making decisions about how to draft the CCSS
for K-12 mathematics to meet with researchers who
have been active in developing learning trajectories
that cover significant elements of the school math-
ematics curriculum to discuss the implications of the
latter work for the standards writing effort. Professors
Jere Confrey and Alan Maloney at North Carolina
State University (NCSU), who had recently joined
our working group, suggested that their National
Science Foundation-supported project on a learning
trajectory for rational number reasoning and NCSU’s
Friday Institute had resources they could use to host
and, with CPRE/CCII, co-sponsor a workshop that
would include scholars working on trajectories along
with representatives of the core standards effort.

A two-day meeting was duly organized and carried
out at the William and Ida Friday Institute for
Educational Innovation, College of Education, at

NCSU in August 2009.

That meeting was a success in that the participants
who had responsibility for the development of the
CCSS came away with deeper understanding of the
research on trajectories or progressions and a convic-
tion that they had great promise as a way of helping
to inform the structure of the standards they were
charged with producing. The downside of that success
was that many of the researchers who participated in
the meeting then became directly involved in working
on drafts of the proposed standards which took time
and attention away from the efforts of the CCII
working group.

Nevertheless, we found the time needed for further
deliberation, and writing, sufficient to enable us to
put together this overview of the current understand-
ing of trajectories and of the level of warrant for
their use. The next section builds on work published
elsewhere by Douglas Clements and Julie Sarama to
offer a working definition of the concept of learning
trajectories in mathematics and to reflect on the
intellectual status of the concept and its usefulness
for policy and practice. Section III, based in part on
suggestions made by Jere Confrey and Alan Maloney
and on the discussions within the working group,
elaborates the implications of trajectories and
progressions for the design of potentially more
effective assessments and assessment practices. It

is followed by a section (Section IV') written by
Marge Petit that offers insights from her work on
the Vermont Mathematics Partnership Ongoing
Assessment Project (OGAP) about how teachers’

understanding of learning trajectories can inform
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their practices of formative assessment and adaptive
instruction. Section V, written by Phil Daro, is based
on his key role in the development of the CCSS for
mathematics, and reflects on the ways concepts of
trajectories and progressions influenced that process
and draws some implications for ways of approaching
standards in general. Section VI, offers a set of
recommended next steps for research and develop-
ment, and for policy, based on the implications of the
working group’s discussions and writing. This report
is supplemented by two appendices. First, Appendix
A, developed by Wakasa Nagakura and Vinci Daro,
provides summary descriptions of a number of efforts
to describe learning trajectories in key domains of
mathematics learning. Vinci Daro has written an
analytic introduction to the appendix describing some
of the important similarities and differences in the
approaches taken to developing and describing tra-
jectories. Her introduction has benefitted significantly
from the perspectives offered by Jeftrey Barrett and
Michael Battista’, who drafted a joint paper based

on comparing their differing approaches to describing
the development of children’s understanding of
measurement, and their generalization from that
comparison to a model of the ways in which approaches
to trajectories might differ, while also showing some
similarities and encompassing similar phenomena.
Finally, to supplement the OGAP discussion in
Section IV, Appendix B provides a Multiplicative
Framework developed by the Vermont Mathematics
Partnership Ongoing Assessment Project (OGAP)

as a tool to analyze student work, to guide teacher
instruction, and to engage students in self-assessment.

We hope readers will find this report a useful
introduction to current work and thinking about
learning trajectories for mathematics education. In
this introduction to the report we have tried to show
readers why we care, and they should care, about
these questions, and we have tried to offer a perspec-
tive on how to think about what is being attempted
that might cast some light on the varying, and
sometimes confusing, ways in which the terms
trajectory, progression, learning, teaching, and so on,
are being used by us and our colleagues in this work.

7 We would like to acknowledge the input of Jeffrey Barrett and Michael Battista to this report; elaborations of their contributions will be
available in 2011 in a volume edited by Confrey, Maloney, and Nguyen (forthcoming).
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II. WHAT ARE LEARNING TRAJECTORIES? AND WHAT ARE THEY GOOD FOR?*

In the Introduction we referred to our colleagues’,
Julie Sarama and Douglas Clements’, definition of
mathematics learning trajectories and tried to parse
it briefly. They define trajectories as:

and complexity of students’ knowledge and skill in
any domain starts out small and, with effective
instruction, becomes much larger over time, and that
the amount of growth clearly varies with experience
and instruction but also seems to reflect factors
associated with maturation, as well as significant
individual differences in abilities, dispositions, and
interests. Trajectories or progressions are ways of

descriptions of children’s thinking and
learning in a specific mathematical
domain, and a related conjectured route

through a set of instructional tasks
designed to engender those mental
processes or actions hypothesized to
move children through a developmental
progression of levels of thinking, created
with the intent of supporting children’s
achievement of specific goals in that

characterizing what happens in between any given set
of beginning and endpoints and, in an educational
context, describe what seems to be involved in
helping students get to particular desired endpoints.
Clements and Sarama build their definition from
Marty Simon’s original coinage, in which he said that
a “hypothetical learning trajectory” contains “the

mathematical domain. (Clements &

learning goal, the learning activities, and the thinking
Sarama, 2004, p. 83)

and learning in which the students might engage”
(1995, p. 133). Their amplification makes it more
explicit that trajectories that are relevant to schools
and instruction are concerned with specifying instruc-
tional targets—goals or standards—that should be
framed both in terms of the way knowledge and skill
are defined by the school subject or discipline, in

this case mathematics, and in terms of the way the
students actually apply the knowledge and skills.

In this section we will continue our parsing in
more detail, using their definition as a frame for
exam-ining the concept of a trajectory and to
consider the intellectual status and the usefulness
of the idea. In this we rely heavily on the much
more detailed discussions provided by Clements
and Sarama in their two recent books on learning
trajectories in early mathematics learning and
teaching, one written for researchers and one for
teachers and other educators (Clements & Sarama,
2009; Sarama & Clements, 2009a), and a long
article drawn from those volumes, written as back-
ground for this report and scheduled to appear in
a volume edited by Confrey, Maloney, and Nguyen

In their formulation there actually are two or more
closely related and interacting trajectories or ordered
paths aimed at reaching the goal(s):

» Teachers use an ordered set of instructional
experiences and tasks that are hypothesized to

(in press, 2011). We will not try here to repeat their
closely reasoned and well documented arguments,
available in those references, but rather we will try
to summarize and reflect on them, consider their
implications for current policy and practice, and
suggest some limitations on the practical applicabil-
ity of the concept of a trajectory, limitations that
may be overcome with further research, design, and
development.

All conceptions of trajectories or progressions have
roots in the unsurprising observation that the amount

“engender the mental processes or actions” that
develop or progress in the desired direction (or
they use curricula and instructional materials that
have been designed based on the same kinds of
hypotheses, and on evidence supporting those

hypotheses); and

Students’ “thinking and learning... in a specific
mathematical domain” go through a “developmen-
tal progression of levels” which should lead to

the desired goal if the choices of instructional
experiences are successful.

8 Based on a paper prepared by Douglas Clements and Julie Sarama. The paper is based in part upon work supported by the Institute of
Education Sciences, U.S. Department of Education, through Grant No. R305K05157 to the University at Buffalo, State University of New York,
D. H. Clements, J. Sarama, and J. Lee, “Scaling Up TRIAD: Teaching Early Mathematics for Understanding with Trajectories and Technologies”
and by the National Science Foundation Research Grants ESI-9730804, “Building Blocks--Foundations for Mathematical Thinking, Pre-Kinder-
garten to Grade 2: Research-based Materials Development.” Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
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The goals, and the trajectory of ordered instructional
experiences, reflect the hopes of the school, and the
society that supports the school, but if the students
are actually to learn what is hoped, attention will have
to be paid to whether in practice there is the expected
correspondence between the trajectory of instructional
experiences and the trajectory of students’ thinking.
'The “conjectured” or hypothesized order of experiences
that should engender progressive growth in the levels
of students’ thinking will need to be checked against
actual evidence of progress, presumably to be revised
and retried if the hypotheses prove false or faulty.
While the two trajectories—of thinking and learning
on the one hand, and teaching on the other—are
analytically distinguishable, Clements and Sarama
argue that they are inextricably connected and best
understood as being so. Still, their stress on the active
or constructive nature of students’ learning does
suggest that their learning may not just reflect the
order of development that the tasks and experiences
are expected to engender, but that learning may
develop in ways that can sometimes be surprising

and even new.

Clements and Sarama fit the concept of learning
trajectories within a larger theoretical framework they
call “Hierarchic Interactionalism” (HI). HI is a
synthesis of contemporary approaches to understand-
ing how human beings learn and develop. It holds
that cognitive development, both general and domain
specific, proceeds through a hierarchical sequence of
levels of concepts and understanding, in which those
levels grow within domains and in interaction with
each other across domains, and their growth also
reflects interaction between innate competencies and
dispositions and internal resources, on the one hand,
and experience, including the affordances of culture as
well as deliberate instruction, on the other. Clements
and Sarama say that “mathematical ideas are repre-
sented intuitively, then with language, then metacog-
nitively, with the last indicating that the child pos-
sesses an understanding of the topic and can access
and operate on those understandings to do useful

and appropriate mathematical work.” (Clements &

Sarama, 2007b, p. 464)

HI would suggest, with respect to mathematics, at
least, that the developmental levels described in
trajectories are probably best understood and observed
within specific mathematical domains or topics,

though they also are influenced by more general,
cross-domain development. The levels are seen as
being qualitatively distinct cognitive structures of
“increasing sophistication, complexity, abstraction,
power, and generality.”” For the most part they are
thought to develop gradually out of the preceding
level(s) rather than being sudden reconfigurations,
and that means that students often can be considered
to be partially at one level while showing some of the
characteristics of the next, and “placing” them in
order to assign challenging, but doable work becomes
a matter of making probabilistic judgments that they
are more likely to perform in ways characteristic of a
particular level than those of levels that come before
or after it. There is some suggestion that a “critical
mass” of the elements at a new level have to be
developed before a student will show a relatively high
probability of responding in ways characteristic of
that level, but HI does not suggest that ways of
thinking or operating characteristics of earlier levels
are abandoned—rather students may revert to them
if conditions are stressful or particularly complex,

or perhaps as they “regroup” before they move to an
even higher level. Making the case for considering a
student to be “at”a particular level requires observa-
tion and evidence about the student’s probable
responses in contexts where the level is relevant.

HI distinguishes its levels from developmental
“stages” of the sort described by Piaget and others.
Stages are thought to characterize cognitive perfor-
mance across many substantive domains, whereas
HI levels are considered to be domain specific, and
the movement from one level to another can occur
in varying time periods, but it generally will happen
over a much shorter time than movement from one
stage to the next. The latter can be measured in years.
HI also adopts the skepticism of many students of
development about the validity and generality of
the stage concept.

In HI the levels and their order are considered to
have a kind of “natural” quality, in that they are
considered to have their beginnings in universal
human dispositions to attend to particular aspects of
experience, and, at least within a particular culture, to
play out in roughly similar sequences given common
experiences in that culture. And, while particular
representations of mathematics knowledge certainly
aren’t thought to be inborn, HI cites evidence of the

? Clements and Sarama refer to the components of these structures as being “mental actions on objects” to indicate that the mental work is on
or with the concepts, representations, and manipulations within specific mathematical domains.
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Illustration of a portion of a learning trajectory describing the growth of children’s understanding of linear measurement:
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importance of “initial bootstraps” for developing
mathematical understanding:

* Children have important, but often inchoate,
pre-mathematical and general cognitive
competencies and predispositions at birth or soon
thereafter that support and constrain, but do not
absolutely direct, subsequent development of
mathematics knowledge. Some of these have
been called “experience-expectant processes”
(Greenough, Black, & Wallace,. 1987), in which
universal experiences lead to an interaction of
inborn capabilities and environmental inputs that

guide development in similar ways across cultures
and individuals. They are not built-in representa-
tions or knowledge, but predispositions and
pathways to guide the development of knowledge
(cf. Karmiloff-Smith, 1992). Other general
cognitive and meta-cognitive competencies make
children—from birth—active participants in their
learning and development. (Tyler & McKenzie,
1990; Clements & Sarama, 2007b, p. 465)

However, HI also recognizes that the pace at which
individuals’ knowledge and skill develop, and the
particular sub-paths they follow from level to level—
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and certainly whether they reach later levels at all—
can vary considerably with variations in experiences
and probably according to individual differences as
well. So, HI doesn’t claim that any particular progres-
sion is inevitable, but rather asserts that some will be
more likely than others, and that some will be more
productive than others. In addition, HI makes a
strong hypothetical claim that, with respect to the
organization of instruction and the design of hypo-
thetical learning trajectories, sequences of instruc-
tional experiences and tasks that follow and exploit
the more likely developmental paths will prove to be
more effective and efficient in helping most students
move toward desired instructional goals, and do so in
ways that leave them with deeper and more flexible
understanding. Clements and Sarama cite some
modest encouraging evidence that the number of
short-term learning paths (or alternative solution
strategies) likely to be seen in typical mathematics
classes should normally be small enough for teachers
to handle, and many of the variants will represent
earlier or later points on the same trajectory (Murata
& Fuson, 2006). However, they also stress that HI
would postulate that the influence of more universal
and internal factors relative to variations in external
experience and instruction would become less and less
as students get older and the mathematics becomes
more advanced, and that the range of variation due
to differences in experience will certainly increase.

So, what this boils down to is that close attention to
developmental progressions and to the ways that
students’ thinking typically responds to instructional
experiences should be particularly useful in designing
teaching and learning trajectories—that is, in figuring
out what kinds of tasks and experiences would model
and require the kinds of cognitive action that would
need to come next if a student were to be supported
in moving from where his or her thinking now stands
to levels that would be closer to matching the goals
of instruction. HI makes clear that a lot of interacting
and potentially compensating factors are normally
at work in a student’s response to an instructional
experience, so instruction at any given time may
relate to multiple levels of a learning trajectory for
each student. A well-designed sequence of instruc-
tional tasks will develop robust competencies over
the trajectory.

Researchers can use HI to frame an extended
program of serious and iterative empirical work
involving close observation of how students think

as they learn mathematics, and of the particular
circumstances in which they are learning, including
what curriculum is being used and what the student’s
teacher and peers are actually doing, so that well

grounded descriptions of likely teaching and learning
trajectories, and their range of likely variation, can be
developed. These descriptions can be used as a basis
for designing even more effective trajectories and
(adaptive) instructional regimes for use with other
comparable populations of students.

See Illustration on page 27.

Clements and Sarama suggest that what distinguishes
approaches to curriculum design based on learning
trajectories and developmental progressions from
other approaches, such as “scope and sequence,” is not
just that they order instructional experiences over
time—Dbecause most past approaches have recognized
the need to do that—but rather that the hypoth-
esized order is based not only on the logic of the
mathematics discipline or traditions of conventional
practice but also on this close attention to evidence
on students’ thinking and how it actually develops in
response to experience and instruction.

Whether this difference actually is significant or not
depends on the rigor of the empirical work that
supports the hypothetical trajectories, and curricula
and instruction based on them. Elsewhere Clements
and Sarama (2007c, 2008; Sarama & Clements,
2009b) have reported their own work on developing
and testing learning trajectory-based instruction

and curricula in early mathematics learning. Their
“Building Blocks” curriculum (2007a) is supported
by solid evidence, including evidence from random
controlled trial experiments, that it performs signifi-
cantly better than instruction based on curricula not
rooted in trajectories—in the areas of early math-
ematics learning in understanding of number,
operations, geometrical shapes, patterning, and
measurement, among others. Our Appendix A lists a
number of other examples of hypothesized trajecto-
ries that can offer some evidence to support the claim
that they provide a basis for design of more effective
instruction. While Clements and Sarama recognize
that the model of development that would best fit the
phenomena described by HI would probably require
a complex web of interrelated progressions and
contingencies, they argue that their practical work
convinces them that it is useful to isolate and focus
on domain- or topic-specific learning trajectories as
the unit of analysis most relevant to instruction.
Teachers find it difficult, and not particularly helpful,
to focus on all of the factors that might be influenc-
ing their students’ progress, but they seem to welcome
guidance about the steps their students are likely to
go through in developing their understanding of the
current topic of instruction (as, for instance, multipli-
cative reasoning—see Section IV on OGAP).
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Ilustration of the theoretical account of developing competence over time, perhaps as short a timespan as
2 years, or as long as 10 years:

Competence

Time

Source. Sarama {3 Clements, 2009a

NOTE: The layered figure illustrates the levels of developing competence as described by Hierarchic Interactionalism (Sarama & Clements,
2009a). Ihe vertical axis describes conceptual and practical competence in a content domain. The horizontal axis represents developmental time.
Several types oflfjin/eing dm;f/o]) at once, shown as various /ayum. Students may access them in varying ways over time. Darker .\'/_mz,ﬁng indicates
dominance of a type of thinking at some time. Students do not necessarily exhibit the most competent level of thinking they have achieved, but
may fall back to simpler levels if practical. The small arrows show initial connections from one type of thinking to another, and the larger arrows
show established connections, allowing for fall back or regaining a prior type afz‘/yz'/z/cing.

'The point of all this is that the proof is in the pudding.
If it can be established that most students, at least
within a particular society, within a wide range of
ability, and with access to appropriate instruction,
follow a similar sequence, or even a small finite range
of sequences, of levels of learning of key concepts and
skills, then it should be possible not only to devise
instructional sequences to guide students in the
desired directions, but it should also be possible to
develop standards and expectations for students’
performance that are referenced to those sequences;
so that the standards, and derived assessments, report
in terms that have educational meaning and relevance.
The following sections suggest some of these implica-
tions, particularly for assessments and standards, but
also for adaptive instruction.
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In CPRE’s report on Learning Progressions in Science
(Corcoran, Mosher, & Rogat, 2009), we argued that
one of the benefits of developing and testing progres-
sions—well warranted hypotheses about the pathways
students’ learning of the core concepts and practices
of science disciplines are likely to develop over time,
given appropriate instruction—would be that the
levels of learning identified in those progressions
could serve as reference points for assessments
designed to report where students are along the way
to meeting the goals of instruction and perhaps
something about the problems they might be having
in moving ahead. Clearly, the related ideas about
learning and teaching trajectories in mathematics
hold out the same promise of providing a better
grounding for designing assessments that can report
in educationally meaningful terms.

What we are suggesting, however, is easier said

than done. But we are not alone in suggesting it.

The National Research Council’s (NRC) 2001 report
on the foundations of assessment, Knowing what
Students Know (Pellegrino, Chudowsky, & Glaser,
2001), describes educational assessment as a triangu-
lar (and cyclical) process that ideally should relate:

* Scientifically grounded conceptions of the nature
of children’s and students’ thinking, understand-
ing, and skills, and how they develop; to

* 'The kinds of observations of students’and
children’s behavior and performance that might
reflect where they are in the development of
their thinking and understanding, and ability to
use that knowledge; and to

* 'The kinds of reasoning from, or interpretation
of, those observations that would support
inferences about just where children and students
were in the development of their thinking,
understanding, and skill.

The vertices of the NRC report’s assessment triangle
were named cognition, observation, and interpretation.

What the NRC panel labeled ‘cognition’ involves a
contemporary understanding of the ways in which
sophisticated expertise in any field develops, with
instruction and practice, out of earlier naive concep-
tions. And they suggest that such expertise involves
the development of coherent cognitive structures that
organize understanding of a field in ways that make

knowledge useful and go well beyond simple accumu-
lation of facts or skills. In their view, the role of
assessment should be to support inferences about the
levels of these structures (they call them “schemas”)
that students have reached, along with the particular
content they have learned and particular problems
they might be having. That view seems to us to be
completely consistent with our view of the role that
learning progressions or trajectories should play (and
at a number of points Knowing what Students Know
in fact uses the term progressions to describe the
content of the cognition vertex of their assessment
triangle). Both their view and ours leave open to
empirical investigation the question of how such
progressions, or levels, should be further specified.

It is in this empirical work that the “easier said than
done” aspect of these ideas comes into play. Knowing
what Students Know makes it clear that assessment
items or occasions to observe students’ behavior
should be derived from, and designed to reflect, the
hypothesized cognitive model of students’learning,
and then the results obtained when students perform
the assessment tasks, or when their behavior is
observed, should be subjected to rational examin-
ation and the application of statistical models to see
whether the patterns of students’ performance on the
various tasks and observations look to be consistent
with what one would expect if the cognitive theory
is true and the items are related to it in the ways that
one hoped. Mismatches should not in themselves
invalidate the assessment or the related theory, but
they do represent a challenge to move back through
the chain of reasoning that was supposed to relate
the assessment results to the underlying theory to
see where in that chain the reasoning might have
gone wrong. Knowing what Students Know provides
a clear presentation of the case for this kind of
evidence-based assessment design and then goes on
to describe the considerations that go into the design
of items and occasions for observation; so that they
have a good chance of reflecting the ways knowledge
and behavior are expected to grow based on cognitive
theories and research; and so that the chances they
also are reflecting unrelated factors and influences
are reduced. Then in Chapter 4 (pp.111-172), authors
Pellegrino, Chudowsky, and Glaser present a very
useful overview of new approaches to psychometric
and statistical modeling that can be used to test
whether an assessment’s items and observations
behave in a way that would be predicted if the
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underlying theory of learning were true, and that
also can frame the ways the results are reported and
indicate the levels of confidence one should have

in them.

As we have surveyed the work going on along these
lines, we have concluded that these approaches are
still pretty much in their infancy in terms of practical
use. The bulk of large- and medium-scale assessment
in this country is rooted in older psychometric
models, or updated versions of them, which assume
that the underlying trait that is the target of assess-
ment arrays both students and assessment items along
a single underlying dimension (such things as
“mathematical ability,” or “reading comprehension”).
These models characterize a student’s ability or skill
with reference to his or her peers—to where they
stand in the distribution of all students’ performances
(hence “norm-referenced”)—and stress the ability of
the assessment and its component items to distin-
guish or “discriminate” among students. The items in
the assessment are written to be about the content of
the school subject and to fit into a framework
defining the elements of the content to be covered,
but the fundamental characteristics that determine
whether items get included in the assessment or not
have as much or more to do with whether they “work”
to discriminate among students and behave as though
they are reflecting a single underlying dimension.
Such assessments and the scales based on them (given
assumptions about the nature of the underlying
student performance distributions, the scale scores
often are claimed to have “equal interval” properties—
presumably useful for comparing such things as
relative gains or losses for students at different
locations on the scale) tend not to provide a lot of
specific information about what students know and
can do.”” Nevertheless, in current practice the items
that students who have particular scale scores tend to
get right compared to students who are below them,
and tend to fail compared to students who are above
them, can be examined after the fact to try to infer
something about what the scores at particular points
on the scale imply about what students at those levels
seem to know. It is these after the fact inferences, and
then judgments based on what those inferences seem
to describe, that are used to select the scale scores that

are said to represent such things as “below basic,
basic, proficient, and advanced” levels of performance
on NAEP and on state assessments used for NCLB
and accountability purposes. As teachers have found
through hard experience, these scores and associated
inferences are not of much help in designing instruc-
tional interventions to help students stay on track and
continue to progress. This is one of the reasons that
our various attempts at “data driven improvement” so
often come up short.

Assessments designed in this way are not capable of
reflecting more complex conceptions of the ways
students’ learning progresses, and at best they provide
very crude feedback to teachers or to the system
about what students actually are learning and what
they can do. We don’t need to look very far beyond
the recent experience in New York in which the State
Board of Regents asked a panel of experts to review
the difficulty of the state’s assessments of mathemat-
ics and English language arts and then responded to
their report—that the assessments and performance
standards had become too easy—by increasing the
scale score levels on the assessments that would be
considered to represent attainment of proficiency.
'That decision essentially wiped out much of the perceived
performance gains and “gap-closing” touted by the
current administration of the New York City Schools
as the result of their tenure in office and has gener-
ated controversy about the effects of the city’s reforms
(Kemple, 2010). The real story behind this contro-
versy is the essential arbitrariness of the assessment
cut scores and the inability to offer any independent
evidence about what students at any score level
actually know or can do (or even evidence that chang-
es in those scores are actually associated with changes
in what they otherwise might be observed to know
and do). It is dismaying that quite a bit of the
commentary on this event seems to treat the increase
in the percentages of students in various groups who
now fall below proficiency as an indication that their
actual capabilities have declined, rather than as just a
necessary consequence of raising the score required
for a student to be considered proficient, but that bit
of ignorance really just reflects the degree of mystifi-
cation that has been allowed to evolve around the
design and meaning of state and national assessments.

10 The focus on reliability and on measuring an underlying dimension or trait, and selecting for use-only items that fit well with trait/
dimensional assumptions, can mean that these assessments really mainly end up measuring something quite different from the specific things
students know and can do, and their progress in learning such things. Rather, they may measure students’ relative position on a scale of subject-
specific aptitude and/or general aptitude (or 1.Q.) and/or social class and family opportunity—things that make them fairly effective in predicting
students’ ability to learn new things but which give little specific information about what they have actually learned (and certainly not reliable
information about the specifics). To be sure, because of ecological correlations, students who are high or low on these underlying traits, even
when they have similar in-school exposure, are likely to have learned respectively more or less of the specific material, but the assessments will
not give precise reports of the specifics, and the students’ relative positions on the scales are not likely to change much even if they do in fact
really learn quite a bit of the specifics—among other things because the assessments are often also designed to be curriculum-independent or -neutral.
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The alternative, of course, is to design assessments so
that they discriminate among, and report in terms of
differences in, the levels or specific stages of knowl-
edge and skill attained in particular school subjects;
based on tested theories about how those subjects are
learned by most students, as we and Knowing what
Students Know (Pellegrino, Chudowsky, & Glaser,
2001) argue. One of the big questions here is whether
one should think of the growth of student learning as
being an essentially continuous process, albeit a
multi-dimensional one, or whether it is more fruitful
to conceive of it as looking like a series of relatively
discrete, and at least temporarily stable, steps or
cognitive structures that can be described and made
the referents of assessment (even if the processes that
go on in between as students move from one step to
the next might actually have a more continuous, and
certainly a probabilistic, character). Chapter 4 in
Knowing what Students Know provides a helpful
overview of the kinds of psychometric and statistical
models that have been developed to reflect these
different views of the underlying reality, and many of
the issues involved in their use. To oversimplify, there
are choices between “latent variable” and multivari-
able models, on the one hand, and latent class models
on the other. “Latent” simply refers to the fact that
the variables or classes represent hypotheses about
what is going on and can't be observed directly. There
are of course mixed cases. Rupp, Templin, and
Henson (2010) provide a good treatment of the
alternative models and relevant issues associated with
what they call “Diagnostic Classification Models.”

Some of the continuous models use psychometric
assumptions similar to ones used in current assess-
ments but focus more on discriminating among items
than among students, and stress a more rigorous
approach to item design to enhance the educational
relevance and interpretability of the results, while
allowing for increased complexity by assuming that
there can be multiple underlying dimensions in-
volved, even if each of them on its own has a linear
character (see Wilson, 2005 for examples). The latent
class models are in some ways even more exotic.
Among the more interesting are those that rely on
Bayesian inference and Bayesian networks (West et
al., 2010) since those seem in principle to be able to
model, and help to clarify, indefinitely complex ideas
about the number of factors that might be involved in
the growth of students’ knowledge and skill. But for
policymakers these models are more complex and
even more obscure than more conventional psycho-
metric models, and developing and implementing
assessments based on them is likely to be more
expensive. The relative promise and usefulness of the

alternative models needs to be sorted out by use in
practical settings, and it seems unlikely that there will
be a significant shift toward the use of assessments
designed in these ways until there have been some
clear practical demonstrations that such assessments
provide much better information for guiding practice
and policy than current assessments are able to do.

In mathematics, a few investigators are developing
assessments that reflect what we know or can
hypothesize about students’learning trajectories.
For example, our colleagues Jere Confrey and Alan
Maloney at NCSU are working on assessments that
reflect their conception of a learning trajectory for
“equipartitioning” as part of the development of
rational number reasoning (Confrey & Maloney in
press, 2010; Maloney & Confrey 2010). They began
with an extensive synthesis of the existing literature
and supplemented it by conducting cross sectional
clinical interviews and design studies to identify key
levels of understanding along the trajectory. From
these open-ended observations they developed a
variety of assessment tasks designed to reflect the
hypothesized levels. Students’ performances on the
tasks are being subjected to examination using Item
Response Theory (IRT) models to see if the item
difficulties and the results of alternative item selection
procedures produce assessments that behave in

the ways that would be predicted if the items in
fact reflect the hypothesized trajectory and if that
trajectory is a reasonable reflection of the ways
students’ understanding develops. They are working
with Andre Rupp, a psychometrician at the Univer-
sity of Maryland, in carrying out this iterative
approach that over time tests both the choices of
items and the hypothesized trajectory. Finding lack
of fit leads to further design, and the project has
been open to the use of multiple models to see
which of them seem to offer the most useful ways
to represent the data. The work on this project is
ongoing. Across the country, other researchers and
assessment experts are working on the development
of similar assessment tools.

A major development on the national horizon that
may result in much more effort and resources being
devoted to solving the problems of developing usable
assessments based on more complex conceptions of
how students actually learn, and produce results that
can be more legitimately interpreted in terms of what
students actually know and can do, is the result of the
competition the U.S. Department of Education ran
that will provide support to two consortia of states

to develop assessments that can measure students’
attainment of, and progress toward meeting, the new
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Common Core State Standards (CCSS) for math-
ematics and English language arts. The consortia’s
proposals suggest that they will seek to develop
measures that will report in terms of much more
complex conceptions of student learning (not just
facts and concrete skills, but understanding, and
ability to use knowledge and to apply it in new
situations, and so on) and also to determine whether
students are “on track” over the earlier grades to be
able to meet the “college-and career-ready” core
standards by sometime during their high school years.
The proposals vary in how clearly they recognize how
much change in current methods will be required to
reach these goals, and how long it may take to do it,
but there is agreement about the importance of the
task as well as its scope. The federal resources being
made available should at least ensure that quite a bit
of useful development and experimentation will be
done—perhaps enough to set the practice of assess-
ment design on a new path over the next few years.

With all this discussion of new and seemingly exotic
psychometric models, however, we think there is
something else to be kept in mind. In terms of
everyday instruction, the application of latent variable
or latent class models to the production of valid and
reliable assessments that teachers might use to
monitor student understanding is a bit like using a
cannon to hunt ants. Adaptive instruction, as we have
argued, involves systematic and continuous use of
formative assessment, i.e. teachers’ (and in many cases
students themselves’) reasoning from evidence in
what they see in students’ work, and their knowledge
of what that implies about where the students are and
what they might need to overcome obstacles or

move to the next step, to respond appropriately and
constructively to keep the process moving. That
doesn’t necessarily require the use of formal assess-
ment tools, since well prepared teachers should know
how to interpret the informal and ongoing flow of
information generated by their students’ interactions
with classroom activities and the curriculum. That

evidence doesn’t have to meet the kinds of rigorous
tests of reliability or validity that should be applied
to high stakes and externally supplied assessments,
because the teachers have the opportunity in the
midst of instruction to test their interpretations by
acting on them and seeing whether or not they get
the expected response from the students—and by
acting again if they don’t. Also, if they are uncertain
about the implications of what they see, they have
the option simply of asking their student(s) to
elaborate or explain, or of trying something else to
gather additional evidence.”” In the next section, our
colleague Marge Petit provides a concrete example
of what this process can look like in practice when
it works well.

So we would argue that, while it is extremely impor-
tant to apply the new approaches we have described
briefly here to the design of much better large-scale
assessments whose reports would be more informative
because they are based on sound theories about how
students’ learning progresses, it also will be crucial

to continue to focus on developing teachers’ clinical
understanding of students’ learning in ways that can
inform their interpretations of, and responses to,
student progress and their implementation of the
curricula they use. Teachers of course operate day

to day on a different grain size of progress from the
levels that large-scale assessments used for summative
assessments are likely to target. The latter will tend

to reference bigger intervals or significant stages of
progress to inform policy and the larger system, as
well as to inform more consequential decisions about
students, teachers, and schools. Nevertheless, it would
be crucial for there to be a correspondence between
the conceptions of student progress teachers use in
their classrooms and the conceptions that underlie the
designs of large-scale assessments. The larger picture
informing the assessment designs would help teachers
to put their efforts in a context of where their
students have been before and where they are

heading.”

11 Some scholars argue that another option to having research on learning trajectories directly influence practice through teacher knowledge is to
develop diagnostic assessments that can be used more formally to support and enhance formative assessment practices (Confrey & Maloney, in
press, 2010). In the latter work, the authors seck a means to develop measures and ways of documenting students’ trajectories to track students’
progress both quantitatively and qualitatively. A conference “Designing Technology-enabled Diagnostic Assessments for K-12 Mathematics,”
held November 16-17, 2010 at the Friday Institute, explored these ideas further (report is forthcoming). Some participants in the conference
argued that such assessments certainly could be useful, but stressed their conviction that effective formative use would still require teachers to
understand the research on mathematics learning that supports the conceptions of students’ progress that provides the basis for the assessment
designs, and also to know the evidence concerning the kinds of pedagogical responses that would help the students given what the assessments
might indicate about their progress or problems. These perspectives represent a healthy tension, or at least a difference in emphasis, among
researchers working on trajectories and formative and diagnostic assessment.

12 Barrett, Clements, & Sarama are using clinical teaching cycles of assessment and instruction to check for the correspondence between claims
about student progress and the cognitive schema collections that are used to describe children’s thinking and ways of developing, or to design the
large-scale assessments. This is being documented as a longitudinal account of eight students across a four-year span, at two different spans:

Pre-K to Grade 2, and the other span from Grade 2 up through Grade 5 (Barrett, Clements, Cullen, McCool, Witkowski, & Klanderman, 2009).
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In addition, it should be helpful and reassuring to
teachers if the assessments that others use to see how
they and their students are doing are designed in
ways that are consistent with the understandings of
students’ progress they are using in the classroom, so
that they can have some confidence that there will be
agreement between the progress they observe and
progress, or lack of it, reported by these external
assessments. Also, it would of course be desirable if
those external reports were based on models that
provide real assurance that the reports are valid and
can be relied on.
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IV. LEARNING TRAJECTORIES AND ADAPTIVE
INSTRUCTION MEET THE REALITIES OF PRACTICE”

Imagine a 5th-grade teacher is analyzing evidence
from student work on a whole number multiplication
and division pre-assessment. The pre-assessment
consisted of a mix of word problems from a range of
contexts and some straight computation problems.
She notices one student correctly answered 80% of
the problems, but solved the problems using repeated
addition or repeated subtraction (Example 1 below).
In the past, the teacher might have been pleased that
the student had 80% correct. However, she now
knows that the use of repeated addition (subtraction)
by a 5th-grade student is a long way from that
student’s attaining an efficient and generalizable
multiplicative strategy such as the traditional
algorithm (CCSSO/NGA, 2010). She also knows
that this student is not ready to successfully engage
in the use of new 5th-and 6th-grade concepts like
multiplication of decimals (e.g., 2.5 x 0.78), or solving
problems involving proportionality, which relies on
strong multiplicative reasoning.

Example 1: Use of Repeated Addition
(VMP OGAP, 2007)

There are 16 players on a team in the
Smithville Soccer League. How many
players are in the league if there are 12
teams?
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The teacher observes and records other evidence
about the strategies or properties that her students
have used to solve the problems (e.g., counting by
ones, skip counting, area models, distributive property,
the partial products algorithm, and the traditional
algorithm); the multiplicative contexts that have

caused her students difficulty (e.g., equal groups,
multiplicative change, multiplicative comparisons,
or measurement); and the types of errors that the
students have made (e.g., place value, units, calcula-
tion, or equations). She will use this evidence to
inform her instruction for the class as a whole, for
individual students, and to identify students who
could benefit with additional Response to Interven-
tion (RTT) Tier II instruction—a school-wide
data-driven system used to identify and support
students at academic risk.””

This teacher and others like her who have partici-
pated in the Vermont Mathematics Partnership
Ongoing Assessment Project (VMP OGAP) have
used the OGAP Multiplicative Framework (See
Appendix B) to analyze student work as briefly
described above, to guide their instruction, and
engage their students in self-assessment. In addition
to administering pre-assessments, they administer
formative assessment probes as their unit of instruc-
tion progresses. They use the OGAP Framework to
identify where along the hypothesized trajectory
(non-multiplicative — early additive — transitional —
multiplicative) students are at any given time and in

any given context, and to identify errors students make.

It is one thing to talk theoretically about learning
trajectories and a whole other thing to understand
how to transfer the knowledge from learning
trajectory research to practice in a way that teachers
can embrace it (see Figure 1 below). The latter
involves designing tools and resources that serve as
ways for classroom teachers to apply the trajectory in
their instruction.

13

Written by Marge Petit, educational consultant focusing on mathematics instruction and assessment. Petit’s primary work is supporting the

development and implementation of the Vermont Mathematics Partnership Ongoing Assessment Project (OGAP) formative assessment project.

14

classroom instruction. (http://www.rti4success.org/)

There are different levels of intervention. RTT Tier II provides students at academic risk focused instruction in addition to their regular
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Figure 1. Transfer of Knowledge from Learning Trajectory Research into Classroom Practice

An example of a project that is developing tools and
resources that bridge the gap between research and
practice is the Vermont Mathematics Partnership
Ongoing Assessment Project (OGAP), developed as
one aspect of the Vermont Mathematics Partnership
(VMP).” In 2003, a team of 18 Vermont mathemat-
ics educators (classroom teachers, school and district
mathematics teacher leaders, an assessment specialist,
and a mathematician) were charged with designing
tools and resources for teachers to use to gather
information about students’ learning while they are
learning, rather than just after their learning, for the
sole purpose of informing instruction. Guided by
findings of the NRC’s expert panels (Pellegrino,
Chudowsky, & Glaser, 2001; Kilpatrick, Swafford,
& Findell, 2001), the design team adopted four
principles that have guided their work through

three studies (VMP OGAP, 2003, 2005, and 2007)
involving over 100 teachers and thousands of stu-
dents: 1) teach and assess for understanding (Kilpat-
rick, Swafford, & Findell, 2001; 2) use formative
assessment intentionally and systematically (Pellegri-
no, Chudowsky, & Glaser, 2001; 3) build instruction
on preexisting knowledge (Bransford, Brown, &
Cocking, 2000); and, 4) build assessments on knowl-
edge of how students learn concepts (Pellegrino,
Chudowsky, & Glaser, 2001). Incorporating these
elements into the tools and resources being developed
provided a structure for helping OGAP teachers to
engage in adaptive instruction as defined in the
introduction to this report.

The fourth principle, build assessments on how
students learn concepts, led, over time, to the develop-
ment of item banks with hundreds of short, focused
questions designed to elicit developing understand-

Learning ‘ Tools and Classroom
. . resources to ‘ Practice
trajectories help translate (Engaging practitioners
o ot trajectories to - ultimately provides
mea(;}i;lii;cs practice researchers and resource
research developers feedback to
<eese— | 7Y

ings, common errors, and preconceptions or miscon-
ceptions that may interfere with solving problems

or learning new concepts. These questions can be
embedded in instruction and used to gather evidence
to inform instruction. Importantly, the OGAP design
team developed tools and strategies for collecting
evidence in student work. One of these tools is the
OGAP Frameworks; for multiplication, division,
proportionality, and fractions. Teachers use the
frameworks to analyze student work and adapt
instruction (See, for example, the OGAP Multiplica-
tive Framework in Appendix B). Each OGAP
Framework was designed to engage teachers and
students in adaptive instruction and learning.
Teachers studied the mathematics education research
underlying the OGAP Frameworks, and put what
they learned into practice. The OGAP Frameworks
have three elements: 1) analysis of the structures of
problems that influence how students solve them,
2) specification of a trajectory that describes how
students develop understanding of concepts over
time, and 3) identification of common errors and
preconceptions or misconceptions that may interfere
with students’ understanding new concepts or
solving problems.

From a policy perspective, an important finding
from the Exploratory OGAP studies and the OGAP
scale-up studies in Vermont and Alabama is that
teachers reported that knowledge of mathematics
education research and ultimately the OGAP
Frameworks/trajectories helped them in a number of
important ways. They reported that they are better
able to understand evidence in student work, use the
evidence to inform instruction, strengthen their first-
wave instruction, and understand the purpose of the

15 The Vermont Mathematics Partnership was funded by NSF (EHR-0227057) and the USDOE (S366A020002).
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activities in the mathematics programs they use and
in other instructional materials (VIMP OGAP, 2005,
2007 cited in Petit, Laird, & Marsden, 2010).

The OGAP 2005 and 2007 studies present promising
evidence that classroom teachers, when provided with
the necessary knowledge, tools, and resources, will
readily engage in adaptive instruction. However,
other findings from the OGAP studies provide
evidence that developing tools and providing the
professional development and ongoing support
necessary to make adaptive instruction a reality on

a large scale will involve a considerable investment
and many challenges.

To understand the challenges encountered in
implementing adaptive instruction better we return
to the teacher who observed a 5th-grade student
using repeated addition as the primary strategy to
solve multiplication problems. This teacher has

made a major, but difficult transition from summative
thinking to formative/adaptive thinking. She
understands that looking at just the correctness of

an answer may provide a “false positive” in regards

to a 5th-grade student’s multiplicative reasoning.

She notices on the OGAP Multiplicative Framework
that repeated addition is a beginning stage of
development and that 5th-grade students should be
using efficient and generalizable strategies like partial
products or the traditional algorithm. On a large-
scale assessment one cares if the answer is right or
wrong. On the other hand, from a formative assess-
ment/adaptive instruction lens, correctness is just one
piece of information that is needed. A teacher also
needs to know the strategies students are using, where
they are on a learning trajectory in regards to where
they should be, and the specifics about what errors
they are making on which mathematics concepts or
skills. This is the information that will help teachers
adapt their instruction.

This transition from summative to formative/adaptive
instruction was a major challenge for OGAP
teachers who were well conditioned to administra-
ting summative assessments ranging from class-
room quizzes and tests to state assessments, all of
which have very strict administration procedures.

In formative assessment/adaptive instruction thinking
your sole goal is to gather actionable information

to inform instruction and student learning, not to
grade or evaluate achievement. That means if the
evidence on student work isn’t clear—you can ask the
student for clarification or ask the student another
probing question.

OGAP studies showed that once a teacher became
comfortable with looking at student work (e.g.,
classroom discussions, exit questions, class work, and
homework) through this lens, their next question
was—“‘Now that we know, what do we do about it?”
As a case in point, one of the best documented
fraction misconceptions is the treatment of a fraction
as two whole numbers rather than as a quantity unto
itself (Behr, Wachsmuth, Post, & Lesh, 1984; VMP
OGAP, 2005, 2007; Petit, Laird, & Marsden, 2010;
Saxe, Shaughnessy, Shannon, Langer-Osuna, Chinn,
& Gearhart, 2007). This error results in students
adding numerators and denominators when adding
fractions, or comparing fractions by focusing on the
numerators or denominators or on the differences
between them. Example 2 below from a Sth-grade
classroom is particularly troubling, and very informa-
tive. In the words of one teacher, “In the past I would
have been excited that a beginning 5th-grade student
could add fractions using a common denominator.

I would have thought my work was done. It never
occurred to me to ask the student the value of the
sum.” (VMP OGAP, 2005). When faced with
evidence such as found in Example 2, OGAP
teachers made the decision to place a greater instruc-
tional emphasis on the magnitude of fractions and
the use of number lines, not as individual lessons as
they found them in their text materials, but as a daily
part of their instruction.

Example 2: Inappropriate Whole Number
Reasoning Example

Added sums accurately and then used the magnitude
of the denominator or numerator to determine that is
closest to 20. (Petit, Laird, & Marsden, 2010)

The sum of %2and % is closest to

A. 20
B. 8
C. %
D 1

Explain your answer.
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This action is supported by mathematics education
research that suggests that number lines can help to
build understanding of the magnitude of fractions
and build concepts of equivalence (Behr & Post,
1992; Saxe, Shaughnessy, Shannon, Langer-Osama,
Chinn, & Gearhart, 2007; VMP OGAP, 2005 and
2007). Research also suggests the importance of
focusing on the magnitude of fractions as students
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begin to operate with fractions (Bezuk & Bieck,
1993, p.127; VMP OGAP, 2005, 2007 cited in Petit,
Laird, & Marsden, 2010).

This example has other implications for making
adaptive instruction a reality in mathematics class-
rooms. Resources, like OGAP probes and frame-
works, must be developed that are sensitive to the
research. Teachers must receive extensive training in
mathematics education research on the mathematics
concepts that they teach so that they can better
understand the evidence in student work (from
OGAP-like probes or their mathematics program)
and its implications for instruction. They need
training and ongoing support to help capitalize on
their mathematics program’s materials, or supplement
them as evidence suggests and help make research-
based instructional decisions.

I realized how valuable a well designed,
research-based probe can be in finding
evidence of students’ understanding. Also,
how this awareness of children’s thinking
helped me decide what they (students)
knew versus what I thought they knew.
(VMP OGAP, 2005 cited in Petit and
Zawojewski, 2010, p. 73)

In addition, while it is true that formative assessment
provides teachers the flexibility “to test their interpre-
tations by acting on them and seeing whether or not
they get the expected response from the students—
and acting again if they don’t” (see Section III of

this report), OGAP studies show that teachers who
understand the evidence in student work from a

research perspective are looking for research-based
interventions. Drawing on my own experience as
a middle school teacher in the early 1990s when

I was faced with students adding numerators and
denominators (e.g., % + % = %2), | would re-teach
common denominators “louder and slower,” never
realizing that the problem was students’ misunder-
standing magnitude or that students did

not have a mental model for addition of fractions
as suggested in the research.

While there is research on actions to take based on
evidence in student work, much more needs to be
done if the potential of adaptive instruction is to be
realized. Research resources need to be focused not
only on validating trajectories as a research exercise,
but on providing teachers with research-based
instructional intervention choices.

OGAP teachers are now recording on paper a
wealth of information on student learning as de-
scribed earlier in this chapter. To help facilitate this
process, OGAP is working closely with CPRE
researchers from the University of Pennsylvania and
Teachers College, Columbia University, and with the
education technology company, Wireless Generation,
in developing a technology-based data entry and
reporting tool grounded on the OGAP Multiplicative
Framework. The tool will be piloted in a small
Vermont-based study during the 2010-2011 school
year. It is designed to make the item bank easily
accessible; it provides a data collection device based
on the OGAP Multiplicative Framework linked to
item selection (See Figure 2). The tool is designed

Figure 2: Draft Evidence Collection Tool that Uses Touch Screen Technology.
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to provide reports that show where on the trajec-
tory (OGAP Framework) each student is at any
given time, with any given problem structure, and
across time. It also provides results about accuracy
and errors, and misconceptions by students and by
the class.

Students’ performances with respect to learning
trajectories, like those in the OGAP Frameworks,
do not simply increase monotonically. Rather
students move back and forth along the trajectory
as they interact with new contexts or more complex
numbers until they have fully developed their
multiplicative reasoning (VMP OGAP 2005, 2007;
Clements, & Sarama, 2009). Development of tools,
like the Wireless Generation tool being piloted, will
need to account for this movement if they are to
represent learning trajectories in a meaningful way.

A very important point here is that OGAP and the
Wireless tool being developed is NOT taking the
teacher out of the equation as some multiple choice-
based diagnostic assessments are purporting to do,
to make it easier for a teacher. Rather, the project
has recognized the importance of empowering the
teacher with knowledge of the research that they
use when analyzing student work and making
instructional decisions. These are the cornerstones
of adaptive instruction. Our hypothesis continues
to be that it is the knowledge of the mathematics
education research that empowers teachers, not just
the data from the results of assessments.

From a policy perspective, to accomplish implementa-
tion of adaptive instruction on a large scale our work
has shown the importance of capitalizing on existing
resources and strategies. In Vermont, this meant
working with mathematics teacher leaders who

were graduates of a three-year masters program in
mathematics (the Vermont Mathematics Initiative).
OGAP professional development was provided
directly to teacher leaders in two stages. The first
stage focused on teacher leader knowledge, and

the second phase provided the teacher leaders with
support as they worked with other teachers in

their district.

Small pilots in Alabama have led to a decision by the
Alabama Department of Education to make OGAP
a major intervention strategy. Next June AMSTI
(Alabama Mathematics and Science Teachers
Initiative) leaders from across Alabama will receive
OGAP training and support as they begin to engage
Alabama teachers state wide. They recognize this is
a multi-year effort, but they are setting the stage for
it to begin.

Other district and state policies that value the use
of formative assessment and adaptive instruction
need to be put into place if these strategies are to
be used at all by teachers. State standards that favor
breadth over depth, or are not built on mathematics
education research or districts’ use of unrealistic
pacing guides linked to quarterly assessments will
all serve as formidable barriers to the use of forma-
tive assessment and adaptive instruction.

Our work indicates that it is possible to engage
teachers in adaptive instruction and to use learning
trajectories as described above, but it will take a
commitment by policymakers, material developers,
mathematics education researchers, and educators
at all levels to accomplish the goal.
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V. STANDARDS AND LEARNING TRAJECTORIES:
A VIEW FROM INSIDE THE DEVELOPMENT OF
THE COMMON CORE STATE STANDARDS”

One sees the difficulty with this standards
business. If they are taken too literally,
they don't go far enough, unless you make
them incredibly detailed. You might give
a discussion of a couple of examples,

to suggest how the standards should be
interpreted in spirit rather than by the
letter. But of course, this is a slippery slope.

Roger Howe, Yale, March 15, 2010 input
to Common Core State Standards

... the “sequence of topics and perfor-
mances” that is outlined in a body of
mathematics standards must also respect
what is known about how students learn.
As Confrey (2007) points out, developing
“sequenced obstacles and challenges for
students...absent the insights about
meaning that derive from careful study
of learning, would be unfortunate and
unwise.” In recognition of this, the
development of these Standards began
with research-based learning progressions
detailing what is known today about how
students’ mathematical knowledge, skill,
and understanding develop over time.

Common Core State Standards, 2010, p.4
Sequence, Coherence, and Focus in Standards

Standards, perforce, sequence as well as express
priority. On what basis? By design, one hopes. I was

a member of the small writing team for the Common
Core State Standards (CCSS). As such, I was part

of the design, deliberation and decision processes,
including especially reviewing and making sense of
diverse input, solicited and unsolicited. Among the
solicited input were synthesized ‘progressions’ from
learning progressions and learning trajectory research-
ers, and sequences proposed by mathematicians.

'This section will look at the general issues of sequence,
focus, and coherence in mathematics standards from
the perspective of the CCSS for Mathematics.

Cognitive Development, Mathematical Coherence,
and Pedagogic Pragmatics

Decisions about
sequence in stan-
dards must balance
the pull of three
important dimen-
sions of progression:
cognitive development, mathematical coherence, and
the pragmatics of instructional systems. The situation
differs for elementary, middle, and high school grades.
In brief: elementary standards can be more deter-
mined by research in cognitive development, and high
school more by the logical development of math-
ematics. Middle grades must bridge the two, by no
means a trivial span.

Standards are pulled in three
directions. .. cognitive development,
mathematical cobherence, and the
pragmatics of instructional systems.

Standards sequence for grade levels; that is, the
granularity of the sequence is year-sized. Standards
do not explicitly sequence within grade level, although
they are presented in an order that makes some sense
for this purpose.

Standards as a Design Project Informed by Evidence

The CCSS writing team had the unusual experience
of working on the standards as a design project rather
than as a political project. The charge was: design a
good tool for improving mathematics achievement.
Base it on evidence. Extensive input was organized
from individuals, organizations and, especially, states.
The states themselves organized input processes.
Comprehending the variety of input and making use
of it did, in fact, have several dimensions: finding
good design suggestions at many levels, improve-
ments in communication, and uncovering disagree-
ments. Disagreements led the writers to balance
clarity of focus, internal coherence and practical
choices about the underlying issues

that gave rise to the disagreements. Sometimes these
choices felt political. Perhaps some were. Nonetheless,
if one thinks of the CCSS as the quotient of the
input that “goes into” a draft, politics was at most

a remainder.

16 Written by Philip Daro, Senior Fellow for Mathematics of America’s Choice and Director, San Francisco Strategic Education Research
Partnership (SERP), a partnership of UC Berkeley, Stanford, and the San Francisco Unified School District.
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Crucial to the design, and much more important
than politics, was the evidence from learning trajec-
tory research in the sequencing and content of

the standards. The examples that follow show how
learning trajectory research, mathematical coherence,
and the constraints of instructional practice informed
the design of the CCSS. Beyond their direct contri-
bution, working with learning trajectories engendered
a way of thinking about sequence and coherence that
synthesized mathematical development with human
development and learning. This way of thinking
extended beyond the specifics of the research and
was very fruitful.

The CCSS incorporate a progression for learning
the arithmetic of the base ten number system from
K through Grade 5. A mathematically coherent
development is difficult because the simple ideas on
which the base ten system is based are too advanced
for these grades: sums of terms that are products of
a single-digit number and a power of ten, including
rational exponents for decimal fractions. Pragmatic
design choices had to be made.

The CCSS for Grade 1 ask students to:

2. Understand that the two digits of a two-digit
number represent amounts of tens and ones.
Understand the following as special cases:

a. 10 can be thought of as a bundle of ten
ones—called a “ten.”

b. The numbers from 11 to 19 are composed
of a ten and one, two, three, four, five, six,
seven, eight, or nine ones.

(CCSS, 2010)

This approach takes advantage of what the researchers
call “unitizing” (Glasersfeld 1995; Steffe & Cobb,
1988) by bundling ten ones into a ten to enable
counting the tens and later adding and subtracting
tens (as units).

The relative weight to give cognitive development
vs. mathematical coherence gets more tangled with
multiplication, the number line, and especially
fractions. Understanding the arithmetic of fractions
draws upon four prior progressions that informed
the CCSS: equipartitioning, unitizing, number line,
and operations.

The first two progressions, equipartitioning and
unitizing, draw heavily from learning trajectory
research. Confrey has established how children
develop ideas of equipartitioning from early experi-

ences with fair sharing and distributing. These
developments have a life of their own apart from
developing counting and adding. Clements and also
Steffe have established the importance of children
being able to see a group(s) of objects or an abstrac-
tion like ‘tens’ as a unit(s) that can be counted.
Whatever can be counted can be added, and from
there knowledge and expertise in whole number
arithmetic can be applied to newly unitized objects;
like counting tens in base 10, or adding standard
lengths such as inches in measurement. The progres-
sion begins before school age with counting concrete
objects and progresses up through the grades to
counting groups of objects, groups of tens, units of
measurement, unit fractions and onward, as illus-
trated in Table 1 below.

Table 1. Development of Equal Partitioning
and Unitizing

Objects 3 objects + 5 objects = 8 objects

Pure numbers 3 ones + 5 ones = 8 ones

Groups of objects | 3 groups of 10 objects + 5 groups
of 10 objects = 8 groups of 10

objects = 80

Groups of 10 ones | 3 tens + 5 tens = 8 tens
are tens

Equal lengths are | 3 inches + 5 inches = 8 inches

units

A length can be i+ Yy + Y44+ =1
equipartitioned
into equal sized
units.

A partof 1inch,% | 3 (¥ inches) + 5 (% inches) =

inch, can be .
counted, added, 8 (% inches)

etc. as a unit

Unit fractions as
pure numbers can
be counted, added
and multiplied

3(%) + 5(%) = 8(%) = 8/4

Expressions with
letters can be read
as uncalculated
numbers

3(x+1) +5(x+1) = 8(x+1)

'The second two progressions feeding into fractions
draw more heavily from the coherence of mathemat-
ics itself. The concept of number that includes
rational numbers (and later, negative numbers and
ordered pairs of numbers in a relationship between
quantities) cannot be developed fully without the
number line. In the CCSS, the number line is used
to help define a unit fraction in third grade. In
subsequent grades, operations with fractions are
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framed in part by interpreting them on the number
line by building on whole number operations on the
number line. The parallel between whole number
operations and fraction operations depends on seeing
unit fractions as something that can be counted.

Operations with whole numbers are the most reliable
and robust mathematical resource for most children.
In the CCSS, a distinction exists between calculating
and reasoning algebraically with whole numbers.
‘Calculating’is treated in the Cluster of standards,
“Number and Operations in Base Ten” and ‘reasoning
algebraically with whole numbers’is treated in the
Cluster, “Operations and Algebraic Thinking.” It is
this latter Cluster that develops concepts and fluency
expressing operations as part of the language of
mathematics: 3 + 5 is a phrase that refers to the sum
of 3 and 5. The “+”is a conjunction in this phrase.
Extending this basic language of operations from
phrases with whole numbers (as nouns) to phrases
with other units like 5(%) + 3(%) enables students

to build on their most solid foundation: whole
number arithmetic.

In third grade, the CCSS introduces two concepts
of fractions:

1. Understand a fraction 1/ as the quantity
formed by 1 part when a whole is partitioned
into 4 equal parts; understand a fraction a/b
as the quantity formed by a parts of size 1/5.

2. Understand a fraction as a number on the
number line; represent fractions on a number
line diagram.

a. Represent a fraction 1/6 on a number line
diagram by defining the interval from 0 to 1 as
the whole and partitioning it into & equal parts.
Recognize that each part has size 1/ and that
the endpoint of the part based at 0 locates the
number 1/4 on the number line.

b. Represent a fraction /4 on a number line
diagram by marking oft  lengths 1/ from 0.
Recognize that the resulting interval has size
a/b and that its endpoint locates the number
a/b on the number line.

(CCSS, 2010)

The first concept relies on student understanding of
equipartitioning. Confrey (2008) and others have
detailed the learning trajectory that establishes how
young children build up this equipartitioning concept
of fraction. Yet by itself, this concept is isolated from
broader ideas of number that, for the sake of math-

ematical coherence, are needed early in the study

of fractions. These ideas are established through

the second standard that defines a fraction as a
number on the number line. This definition has a

lot of mathematical power and connects fractions

in a simple way to whole numbers and, later, rational
numbers including negatives (Wu, 2008). The role
of the number line definition is not obvious coming
to it from prior standards, let alone prior knowledge;
its importance is evident in the standards that follow
in subsequent grades. A teacher or test designer
seeing exclusively within the grade level will miss the
point. Multi-grade progression views of standards
can avoid many misuses of standards.

'The Writing Team of CCSS received wide and
persistent input from teachers and mathematics
educators that number lines were hard for young
students to understand and, as an abstract metric,
even harder to use in support of learning other
concepts. Third grade, they said, is early for relying
on the number line to help students understand
fractions. We were warned that as important as
number lines are as mathematical objects of study,
number lines confused students when used to teach
other ideas like operations and fractions. In other
words, include the number line as something to learn,
but don't rely on it to help students understand that
a fraction is a number. We noted that this warning
was based on present experience in the classroom
and might be the result of poorly designed learning
progressions related to learning the number line.

The difference in advice on fractions on the number
line was not easy to sort through. In the end, we
placed the cognitively sensible understanding first
and the mathematical coherence with the number
line second. We included both and used both to build
understanding and proficiency with comparing
fractions and operations with fractions.

Does the number line appear out of the blue in third
grade? No. We looked to the research on learning
trajectories for measurement and length to see how
to build a foundation for number lines as metric
objects (Clements, 1999; Nihrenbérger, 2001; Nunes,
Light, & Mason, 1993). The Standards from Asian
countries like Singapore and Japan were also helpful
in encouraging a deeper and richer development of
measurement as a foundation for number and quantity.

Clements and Sarama (2009) emphasize the signifi-
cance of measurement in connecting geometry and
number, and in combining skills with foundational
concepts such as conservation, transitivity, equiparti-
tioning, unit, iteration of standard units, accumulation
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of distance, and origin. They have shown that by around
age 8, children can use a ruler proficiently, create their
own units, and estimate irregular lengths by mentally
segmenting objects and counting the segments.

The CCSS foundation for the use of the number line
with fractions in third grade can be found in the
second grade Measurement standards (CCSS, 2010):

Measure and estimate lengths in standard units.

* Measure the length of an object by selecting and
using appropriate tools such as rulers, yardsticks,
meter sticks, and measuring tapes.

* Measure the length of an object twice, using
length units of different lengths for the two
measurements; describe how the two measure-
ments relate to the size of the unit chosen.

* Estimate lengths using units of inches, feet,
centimeters, and meters.

* Measure to determine how much longer one
object is than another, expressing the length
difference in terms of a standard length unit.

Relate addition and subtraction to length.

* Use addition and subtraction within 100 to solve
word problems involving lengths that are given in
the same units, e.g., by using drawings (such as
drawings of rulers) and equations with a symbol
for the unknown number to represent the
problem.

* Represent whole numbers as lengths from 0 on a
number line diagram with equally spaced points
corresponding to the numbers 0, 1,2, ..., and
represent whole-number sums and differences
within 100 on a number line diagram.

This work in measurement in second grade is, in turn,

supported by first grade standards (CCSS, 2010):

* Express the length of an object as a whole number
of length units, by laying multiple copies of a
shorter object (the length unit) end to end; under-
stand that the length measurement of an object is
the number of same-size length units that span it
with no gaps or overlaps. Limit to contexts where
the object being measured is spanned by a whole
number of length units with no gaps or overlaps.

'This sequence in the CCSS was guided by the
learning trajectory research. This research informed
the CCSS regarding essential constituent concepts

and skills, appropriate age, and sequence. Yet the goal
of having the number line available for fractions came
from the need for mathematical coherence going
forward from third grade. This example shows how
pull along these two dimensions—empirical research
on learning and mathematical coherence—can
happen in concert to make standards a better tool

for teaching and assessment on both counts.

Instructional Systems and Standards

Perhaps the most important consequence of standards
is their impact on instruction and instructional
systems. This impact is often mediated by high-stakes
assessments, which will be dealt with later.

An issue arises at
the outset from

a problematic
convention in the
standards genre:
they are written as

...the “immaculate progression” in
standards contrasts with the
spectacular variation of student
readiness in real classrooms

though students in the middle of Grade 5, for
example, have learned approximately 100% of what
is in the standards for Grades K-4 and half of 5,

in other words, they present an “immaculate progres-
sion.” This is never close to possible in any real
classroom. This difference between the genre conven-
tion of immaculate progression in standards and the
wide variation of student readiness in real classrooms
has important consequences. It means, for one thing,
that standards are not a literal portrayal of where
students are or can be at a given point in time.
And, for me, the negation of ‘can’ negates ‘should’.
Standards serve a different purpose. They map
stations through which students are lead from
wherever they start.

Still, the convention seems a sensible approach to
avoiding redundancy and excessive linguistic nuance.
But how does this mere genre convention drive the
management of instruction? Test construction?
Instructional materials and their adoption? Teaching?
Expectations and social justice? Ah...the letter or the
spirit and the slippery slope.

The Rough Terrain of Prior Learning Where
Lessons Lives

Standards imply a curriculum that would present a
sequence of concepts and skills through the calendar:
year to year, month to month, day to day. Textbooks
and tests can be developed to match such a sequence
at a surface level, but the underwater terrain of
students’ prior knowledge will persist in giving shape
to students’ engagement with this sequence. Each
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student arrives at the day’s lesson with his or her own
mathematical biography, including all of the particu-
larities of how—and how well—the student learned
the content of the curriculum on his or her path
through mathematics so far. This section examines
how standards, and the learning trajectories they are
based on, relate to instructional programs that might
more effectively work with the variety of what
students’ bring to the beginning of each lesson. This
diversity of student thinking and knowledge is a
natural condition teachers have always faced (see
Murata & Fuson, 2006 for a related discussion).

Yyou cannoft see or count.

The teacher
brings to this
diversity an
ambition for

...teaching is, and always has been,
like riding a unicycle juggling balls

some mathemat-
ics to be learned. The mathematics has a location in
another structure: the logical coherence of ideas that
reflects the knowledge structure of mathematics
(mathematical coherence). Thus, there is a manifold
of three knowledge structures at play in the class-
room: the variety of what students bring, mathemati-
cal coherence, and the learning trajectories developed
by research. As real as these structures may be, none
is in plain sight for the teacher in the classroom.

What is in plain sight are standards, tests, textbooks
and students’ responses to assigned work. What
teachers know about the path a student has taken to
the knowledge the student has at the time they first
meet is likely to vary widely, depending on the quality
of the assessments used in the school and district, the
information systems in their school, and the time the
student has been in the school or district. Nor have
learning trajectory researchers fully mapped the
territory of the mathematics standards with specific
trajectories. And the full mathematical coherence of
a particular topic is often beyond the mathematical
education of the teacher. Under these conditions,
standards can play a crucial mediating role. What is
real may be hard to see, while standards flash brightly
from every test, text and exhortation that comes the
teacher’s way. To the extent that the standards have
been well designed to embody the critical knowledge
structures in a form handy for teachers and the
makers of tools for teachers, the sequence and focus
of instruction can be coherent with respect to
mathematics and with respect to how students think
and learn. To the extent that standards fail to
harmonize the knowledge structures, they can add

to the dissonance.

Learning trajectory research develops evidence and
evidence-based trajectories (learning trajectories).

Evidence establishes that learning trajectories are
real for some students, a possibility for any student
and probably modal trajectories for the distribution
of students. Learning trajectories are too complex
and too conditional to serve as standards. Still,
learning trajectories point the way to optimal
learn-ing sequences and warn against the hazards
that could lead to sequence errors (see below). The
CCSS made substantial use of learning trajectories,
but standards have to include the essential mathe-
matics even when there has been little learning
trajectory research on the topic. Standards have to
function as a platform for instructional systems that
can accommodate the variation in students, if not
teachers, at each grade level.

Standards can tempt districts to simplistic mechanisms
that mismanage student variety. One temptation to
avoid is to impose strong standards-framed pressure
in an accountability system that ignores student
thinking on the principle that even the mention of
student differences springs leaks of low expectations
into the classrooms. It could name the territory
between the knowledge students have and what
standards demand the “achievement gap,” a dark void
that focuses attention on unexplored distances not
traveled, rather than on the steps that need to be
taken. It could tell teachers to keep turning the pages
of the standards-based textbook according to the
planned pace, and rely on the sheer force of expecta-
tion to pull students along. At least this would create
the opportunity to learn, however fleeting and poorly
prepared students might be to take advantage of it.
While this is better than denial of opportunity, it

is a feeble, if not cynical, response to the promise
standards make to students. Shouldn’t we do better?

What better options are there? Some nations, includ-
ing some high-performing nations, assume

in the structure of their instructional systems that
students differ at the beginning of each lesson. Many
Asian classrooms, K-8, follow a daily arc from the
initial divergence of students’ development (refracted
through the day’s mathematics problem(s) through
classroom discourse about the different “ways of
thinking”) to a convergence of understanding a way
of thinking that incorporates the mathematics to be
learned. Each student is responsible for understand-
ing each “way of thinking.” The teacher leads a closing
discussion, which begins with the way of thinking
that depends on the least sophisticated mathematics.
Students who use less sophisticated mathematics of-
ten rely on good problem solving and sense making
skills, so other students can learn from their approach
as well as from approaches involving more sophisti-

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction



V.STANDARDS AND LEARNING TRAJECTORIES:
A VIEW FROM INSIDE THE DEVELOPMENT OF

THE COMMON CORE STATE STANDARDS

cated mathematics. The discussion is then led through
two or three other ways of thinking ordered by the
sophistication of mathematics deployed in the way

of thinking. Each way of thinking is explicitly related
to each other through questions and discussion. This
process approximates beginning the lesson at the
diversity of student thinking found in the class and
converging on the mathematical coherence. The actual
content of the discussion—the illustrations, analogies,
explanations, diagrams, narratives of student action—
approximates a problem-specific slice of learning tra-
jectories that connect the varied starting points to the
mathematics to be learned. The arc of each lesson be-
gins with divergence of prior experience and ends with
convergence on mathematical understanding that be-
longs to a larger coherence framed by standards.

Such a system requires enough time to achieve con-
vergence each day or two, which means enough time
on a small number of problems that focus on a small
number of topics. A hurried instructional system can-
not ‘wait’ for students each day. To make time for dai-
ly convergence, standards must require less to learn
rather than more each year. A fortunate irony revealed
by the accomplishments of the high-performing
Asian systems reveals that teaching less can result in
learning more; that is, reaching a more advanced
mathematical level by learning a more coherent and
elegant body of knowledge rather than a sprawl of
clutter and fragments. A system that optimizes daily
convergence will be more robust and accumulate less
debt in the form of students unprepared for the next
lesson, and the next course. Unlike the national debt,
this debt does not compound quietly, but makes all
of the noises of childhood and adolescence scorned.

How can a system get from where it is to effective
instruction using well-designed standards as a plat-
form? Start by understanding the tasks and then pre-
paring and supporting educators so they can accomplish
the tasks. The core tasks are to assess the patterns of
mathematical thinking, that is, the rough terrain of
prior knowledge, that students bring to the classroom,
and provide teachers with the curriculum and assess-
ment tools needed to help students move along tra-
jectories toward mathematical targets defined by the
standards, give or take. We know enough to make
learning trajectories and the mathematical coherence
underlying the content and structure of the standards
a top priority for teacher knowledge development.

With enough knowledge of relevant learning trajec-
tories and enough understanding of how learning tra-
jectories work, teachers will better anticipate and rec-
ognize the most common starting points they will
find among their students (Murata & Fuson, 2006;

Battista, 2010). They need knowledge of the relevant
mathematical coherence so they can focus on the
most valuable learning targets. And they need in-
structional tools (diagnostic lessons that make think-
ing visible rather than just “scoring” students) that il-
luminate rather than obscure student thinking. They
need instructional programs, and lesson protocols that
pose standards as the finish line, but accommodate
variation of prior experience. They need instructional-
ly embedded assessments that make student reason-
ing and conceptualization visible rather than hiding
them behind a score that, in effect, pins the student to
the donkey of failure. They need time within the les-
son and across the unit to listen and respond to stu-
dents with guidance on revising their thinking. This
requires standards that are within reach of students
and teachers.

The crucial issue in this situation is how well the
standards-driven texts and tests improve the perfor-
mance of the instructional system in moving students
along the learning trajectories. It is quite possible for
standards to be out of whack with learning trajecto-
ries and actual student thinking so that they mislead
instruction and diminish performance. If the se-
quences in the standards conflict seriously with learn-
ing trajectories, are mathematically incoherent, or are
too far removed from students’ capacities, they can
steer the instructional systems away from effective
teaching and learning. Standards work best when they
are reasonable targets for tested learning trajectories
and when they illustrate a reasonable amount of
mathematical coherence to help teachers respond ef-
fectively to real student thinking by moving them in
the right directions.

The foregoing discussion might seem to suggest that
each standard is situated in a single trajectory. This is
not typically the case. A standard depends on many
earlier standards that are often in several different
trajectories. Likewise, standards in subsequent grades
that depend on the standard can be in several trajec-
tories. This web structure was illustrated by the frac-
tions example earlier in this report. Another impor-
tant example is the CCSS’s Grade 7 standard for
proportional relationships (CCSS, 2010).

2. Recognize and represent proportional relation-
ships between covarying quantities.

a. Decide whether two quantities are in a
proportional relationship, e.g., by testing for
equivalent ratios in a table or graphing on a
coordinate plane and observing whether the
graph is a straight line through the origin.
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b. Identify the constant of proportionality
(unit rate) in tables, graphs, equations,
diagrams, and verbal descriptions of propor-
tional relationships.

c. Represent proportional relationships by
equations. For example, total cost, #, is propor-
tional to the number, 7, purchased at a constant
price, p; this relationship can be expressed as

t=pn.

d. Explain what a point (x, y) on the graph of
a proportional relationship means in terms
of the situation, with special attention to the
points (0, 0) and (1, r) where 7 is the unit rate.

This standard is the culmination of a manifold of
learning trajectories and mathematical coherences
that are reflected in progressions of standards in the
CCSS, and is itself the beginning of subsequent
progressions. Pat Thompson, Arizona State Universi-
ty, has remarked (2010, personal communication)
that proportionality cannot be a single progression
because it is a whole city of progressions (see also
Clements and Sarama on “hierarchical interactional-
ism,” 2009).

This standard, which stands along side other stan-
dards on ratios and rates, explicitly draws on prior
knowledge of fractions, equivalence, quantitative rela-
tionships, the coordinate plane, unit rate, tables, ra-
tios, rates, and equations. Implicitly, this prior knowl-
edge grows from even broader prior knowledge. The
sequence supporting this standard barely captures the
peaks of a simplification of this knowledge structure.
'The complexity of the manifold of learning trajecto-
ries guarantees that teachers will encounter a wide va-
riety of individual mathematical biographies involving
proportional relationships in each class.

Wohat can help teachers respond more effectively to
the variety of readiness? Certainly not pressure to
“cover” the standards in sequence, to keep moving
along at a good pace to make sure all students have
an ‘opportunity’ to see every standard flying by.
Knowledge of relevant learning trajectories would
help teachers manage the wide variety of individual
learning paths by identifying a more limited range of
specific types of reasoning to expect for a given type
of problem (Battista, 2010). Even hypothetical learn-
ing trajectories can do more good than harm because
they conceptualize the student as a competent knower
and learner in the process of learning and knowing
more (Clements & Sarama, 2004). The standards,
based as much as possible on tested learning trajecto-
ries, identify what direction to lead the students from

wherever they begin the lesson. A curriculum, based
on the standards, with the diagnostic value of reveal-
ing how different students see the mathematics—how
they think about it—and where they are along the
learning trajectory would also help.

Even an instructional system with incomplete and
imperfect knowledge of learning trajectories and ac-
tual student thinking treats students as works-in-
progress and focuses teaching on making progress
along illuminated paths. Such systems could easily
function more effectively than a system that inter-
preted standards as direct descriptions of where stu-
dents should be, and by implication characterizes real
students as “unprepared” failures. Certainly, trajecto-
ry-informed instruction would be more motivating
for teachers and students in its emphasis on the mal-
leability of proficiency in mathematics in contrast to
gap-informed systems that highlight the fixedness of
proficiency (Dweck, 1999, 2002; Elliot & Murayama,
2008; Murayama & Elliot, 2009).

Do Standards Express the Form and Substance of
What Students Learn?

What is the nature of the ‘things’ students learn?
Sometimes what is wanted is a performance, as in
learning to ride a bike. Standards, instruction, and
assessment can happily focus on visible performances
in such cases. But often, in mathematics anyway;,
what students learn are mental actions on mental
objects, reasoning maneuvers and rules, representa-
tional systems and languages for mathematical objects
and relations, cognitive schema and strategies, webs
of structured knowledge, conventions, and so on.
Many of these learned ‘things’ are not things, but
systems that interact with other systems in thinking,
knowing, and doing. Standards cannot express this
kind of complexity; they refer to some observable
surface of learning. But this linguistic convenience
can lead to logical fallacies when we attribute unwar-
ranted ‘thinginess’ properties to what we actually
want students to learn.

'The important point is that learned things are not
thingy or topics. A sequence of topics or standards
skims the surface and misses the substance—and even
the form—of a subject. Compare, for example, the
standard (CCSS, 2010), to what a student must actu-
ally know and do to “meet” the standard (for example,
Steffe and Olive, 2009; Confrey, 2008; Confrey et al.,
2009; Wu, 2008, Saxe et al., 2005).

* Add and subtract fractions with unlike denomi-
nators (including mixed numbers) by replacing
given fractions with equivalent fractions in such a

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction



V.STANDARDS AND LEARNING TRAJECTORIES:
A VIEW FROM INSIDE THE DEVELOPMENT OF

THE COMMON CORE STATE STANDARDS

way as to produce an equivalent sum or difference
of fractions with like denominators. For example,
2/3 +5/4=8/12 + 15/12 = 23/12. (In general, a/b +
o/d = (ad + bc)/bd.)

The standard gives a goal, but does not characterize
the knowledge and competencies needed to achieve
the goal. While this point may seem obvious, it gets
lost in the compression chambers where systems are
organized to manage instruction for school districts.
Devices are installed to manage “pacing” and monitor
progress with “benchmark assessments.” These devices
treat the grade-level standards as the form and
substance of instruction. That is, students are taught
grade-level “standards” instead of mathematics. And
this nonsense is actually widespread, especially where
pressures to “meet standards” are greatest.

Standards use conventional names and phrases for
topics in a subject. To what do these refer? If the field
had a well-understood corpus of cognitive actions,
situations, knowledge, etc., then these names could
refer to parts of this corpus. But the field, school
mathematics, has no such widely understood corpus
(indeed, it is an important hope that common stan-
dards will lead to common understandings of such
things). What the names refer to, in effect, are the fa-
miliar conventions of what goes on in the classrooms.
The reference degenerates to the old habits of teach-
ing: assignments, grading, assessment, explanation,
and discussion. The standards say, ‘Do the usual as-
sortment of classroom activities for some content that
can be sorted into the familiar names in the stan-
dards.” We will call this “covering the standards” with
instructional activity.

“Covering” has a very tenuous relationship with
learning. First, there are many choices about focus
within a topic, coherence within and between topics,
what students should be learning to do with knowl-
edge, how skillful they need to be at what, and so on.
Teachers make these choices in many different ways.
Too often, the choices are made in support of a class-
room behavior management scheme. Meanwhile, dif-
ferent students will get very different learning from
the same offered activity, and moreover, the quality of
the discussion, the assigned and produced work, and
the feedback given to students will vary widely from
teacher to teacher working under the blessing of the
same standard.

Covering is weak at best. When combined with stan-
dards that are too far from the prior knowledge of
students, and too many for the time available, the
chemistry gets nasty in a hurry. Teachers move on
without the students; students accumulate debts of

knowledge (knowledge owed to them); and the next
chapter and the next course are undermined. But
managing instruction by “meeting the needs of each
student” is equally weak, because it opens the door to

self-fulfilling low ex-
pectations. The way
through this dilemma
is to use standards that
focus the use of time
where it really matters
so there is time to
respond to students
thinking, rather than
their needs. (And what,

. managing instruction with a
system of ‘covering” standards that
are too many and too far from
students’ prior knowledge is not
management but posturing... the key
is to respond to students’ thinking,
not their so-called ‘needs”... need’
names a sled to low expectations

really, is a “need”?
Usually it is defined as something a student gets
wrong or cannot do, or even more vaguely as a topic
within which a student performs poorly. As such,
“needs” are uninformative as a basis for teaching deci-
sions or misinformative (when students are grouped

by “needs”).

The starting point is the mathematics and thinking
the student brings to the lesson, not the deficit of
mathematics they do not bring. A standard defines

a finish line, not the path. The path begins with the
students’ prior knowledge and finishes with the “stan-
dard” knowledge. The path itself is described by learn-

ing trajectories and mathematical coherences.
Errors in Sequence, Focus, and Coherence

The questions raised in the previous section are not
only design choices, but potential sources of error
with consequences for the viability of instruction. The
next two subsections examine the types of errors that
could menace a standards-based system.

Types of Sequence Errors

There are several types of errors with serious conse-
quences for students and teachers in the way stan-
dards might be sequenced. A common type of
sequence error occurs when a concept, B depends on
A, version of concept A, more evolved than the A,
version; Standards have only developed A,. Student
tries to learn B using A instead of A,. For example,
rate, proportional relationships and linearity (B)
depend on understanding multiplication as a scaling
comparison (version A)), but students may have only
developed version A, concept of multiplication, the
total of things in a groups of 4 each.

In the CCSS, multiplication is defined in Grade 3 as
a x b =cmeans a groups of 4 things each is ¢ things.
In Grade 4, the concept of multiplication is extended
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to comparison where ¢ = 2 x 4 means ¢ is 2 times larger

than 4. In Grade 5, the CCSS has:
5. Interpret multiplication as scaling (resizing), by:

a. Comparing the size of a product to the
size of one factor on the basis of the size
of the other factor, without performing
the indicated multiplication.

b. Explaining why multiplying a given 3.

number by a fraction greater than 1
results in a product greater than the given
number (recognizing multiplication by
whole numbers greater than 1 as a
familiar case); explaining why multiplying
a given number by a fraction less than 1
results in a product smaller than the given
number; and relating the principle of frac-
tion equivalence a/b = (nxa)/(nxb) to the
effect of multiplying a/4 by 1.

(CCSS, 2010)

In Grades 6 and 7, rate, proportional relationships
and linearity build upon this scalar extension of
multiplication. Students who engage these concepts
with the unextended version of multiplication (a
groups of 4 things) will have prior knowledge that

does not support the required mathematical coher- 5.

ences. This burdens the teacher and student with
recovering through learning trajectories. This will be
hard enough without ill sequenced standards causing
instructional systems to neglect, in this case, extend-
ing multiplication to scaling.

Major types of sequence errors include:
1. Unrealistic:

a. Too much, too fast leaving gaps in learning
that create sequence issues for many students.
The system cannot deliver students who are in
sequence or handle so many students out of
sequence. Rushing past reasoning with operations
on whole numbers to teach answer-getting calcula-
tions leaves huge gaps in the foundations of algebra.

b. Distribution of prior mathematics knowl-
edge and proficiency in the student (and
teacher) population is too far from the standards,
and there is no practical way to get students
close enough in time for sequence.

2. Missing ingredient:

a. A is an essential ingredient of B, but

standards sequence B before A. Students try
to learn fractions before essential concepts of number
are available, for example, the number line.

b. Coherence requires progression ABC, but
standards only have AC.

c. Term is used that has insufficient definition
for the intended use.

Cognitive prematurity:

a. B depends on cognitive actions and
structures that have not developed yet.

b. B is a type of schema or reasoning system,
and the learner has not developed that type of
schema or system. Base ten arithmetic, i.e. place
value, depends on unitizing groups ofz‘en, but some
students have not acquired unitizing schema that
can apply to “tens’.

c. Student develops immature version of B and
carries it forward (see also 6).

. Contradiction:

a. Cognitive development entails ABC,
mathematical logic entails CBA.

Missing connection:

a. B isabout or depends on connection between
X-Y, but X-Y connection is not established.

. Interference:

a. B depends on A, version of A, which is
more evolved than A, version, standards have
only developed A,. Then student tries to learn
B using A, instead of A,

b. B belongs nestled between A and C, but D
is already nestled there. When learning B is
attempted, D interferes.

. Cameo:

a. B islearned but not used for a long time.
There is far too much time before learning C
such that C depends on B. B makes a cameo
appearance and then gets lost in the land of free
fragments. Absolute value and scientific notation
are often cameo topics long before they are useful.
Properties of operations are treated as cameos when
their routine use should be made explicit rather
than hidden behind tricks and mnemonic devices
Jfor getting answers, e.g. “FOIL”.
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8. Hard Way: 3. Wrong focus:

a. C needs some ideas from B, but not all the
difficult ideas and technical details that make
B take more time than it is worth and make

it hard for students to find the needed ideas 4. Narrow focus:
from B, so C fails.

a. Focus on answer-getting methods, often
using mnemonic devices, rather than mathematics.

a. Just skills, just concepts, just process, or just

b. There are multiple possible routes to two out of the three.

get from A to E, and the standards take an

PR . Prioriti n here:
unnecessarily difficult route. > orities do not cohere

9. Aimless: a. Fragments have large gaps between them.

a. Standards presented as lists that lack b. Grain size too fine.

comprehensible progression. 6. Congestion:

Types of Focus and Coherence Errors a. Some grade levels are congested with too

. . much to be learned; density precludes focus.
The issues of focus and coherence in standards ’ YyPp

deserve more attention than we will give them here.

b. B, C, D are all being learned at once, but
cognitive actions needed for learning can only
handle one or two at a time. Only BC and CD
are learned, but the essential point is learning

BCD and the system BC-BD-CD.

Nonetheless, learning trajectories interact with
coherence and focus in standards. The following are
critical types of error of focus and coherence:

1. Sprawl:

a. Mile wide, inch deep. Large collection of
standards dilutes the importance of each one.

b. Standards demand more than is possible in

7. Inelegance:

a. AXBYCZ is equivalent to ABC and time

and cognition are wasted on X, Y, and Z.

the available time for many students and 3. Waste:
teachers, so teachers and students are forced to

edit on the fly; this is the opposite of focus. a. Time and cognition are invested in B, and

- . B is not important.
c. Standards are just lists without enough

organizational cues for a hierarchy of concepts 9. Resolution of hierarchy:

and skills.

a. 'The hierarchal relationship between
standards is not explicated, and details are
confused with main ideas.

2. Wrong grain size:

a. The granularity is too specific or too general.
The important understanding is at a certain
level of specificity, where the structure and the
cognitive handles are, and the grain size does

b. The hierarchy of standards does not explain
relationships among ideas, it just collects

standards into categories.
not match up to prior knowledge. (As in

Aristotle’s Ethics, the choice of specificity
is a claim that should be explicit as a claim

and defended.)

10. Excessively literal reading:

a. This error is in the reading as much as the
writing; it leads to fragmented interpretation
of the subject, losing the coherence among
the standards.

b. 'The granularity is too fine. Complex ideas
are chopped up so the main idea is lost; the
coherence may be evoked, but not illuminated.

Alignment transactions in test construction b. Reading individual standards as individual

ingredients of a test. When the explicit goal is
to have the ingredients cook into a cake, tasting
the uncooked ingredients is a poor measure of
how the cake tastes (although it is related). The

and materials development miss the main point
but ‘cover’ the incidentals (e.g., students can
perform the vertical line test but do not know
what a function is or how functions model
phenomena.)
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goal, as stated in the grade-level introductions
and the practices standards, is for the students
to cook.

Assessment

An assessment system designed to help szeer the
instructional system must give good information
about direction as well as distance to travel. A system
that keeps telling us we are not there yet is like a
kid in the back seat whining “are we there yet? How
much further?” In the U.S,, our state assessment
systems whine with scores that tell us how many
students have met the year’s standards in contrast

to giving us a location in a map of trajectories. We
measure failure and define success as “less failure.”

Knowing an estimate for how many students are
“proficient” serves a broad purpose that I hesitate to
call by its customary name, ‘accountability’, because

I cannot figure out exactly who is accountable to
whom for what when it is said ‘schools’ must be ac-
countable. Yet it may serve the broad and important
purpose of enabling the interested to compare perfor-
mance from place to place and time to time. Disag-
gregating scores by student sub-populations serves
the critically important purpose of telling us how
well we are achieving the social justice goals of public
schooling. Yet the assessment results are used for
many purposes in policy formation and management
that go well beyond the design specifications of the
assessment. How valid are these uses of the typical
assessments? Do we need assessments designed for
these uses?

Validity

Validity is a property of a use of an assessment, not
of the assessment per se. The intended use of stan-
dards-based school accountability tests is to motivate
and steer schools with carrots and sticks based on
tests. Are the tests valid for this use? The empirical
validity question is: are districts, schools, teachers,
and students motivated and steered in the right
directions? Hmmm...

How can we improve the validity of using formative
and summative assessment for steering the system,

at each level of the system? Too many “periodic”
assessments at the district level are images of the state
test, which is a fuzzy image of the standards, in part
because the standards imply a full-year of instruction,
not just an hour or two of testing. State tests were
not designed with this use in mind. Perhaps we
should design formative assessment that informs

substantive feedback during the course of instruction
first. The design of state tests could then be based

on such formative assessment, rather than the other
way around.

What makes an assessment formative? Its use to in-
form instruction, and to do this requires three things:
1) Timing: the assessment is available and used while
instruction is still going on, while there is still time
for instruction to respond to information; 2) Feed-
back: the assessment informs, that is the feedback has
content (mathematical content) not just value judg-
ment; and 3) Motivation: the assessment responds

to learning (growth); the relationship between assess-
ment and what should be studied is transparent and
direct, not two different species of work that share a
common topic or standard; test items look like the
class work and homework implied by the standards,
not like a psychological instrument.

Summative uses of assessment have their own issues.
Summative assessment must:

* Focus on the priorities established in the standards;

* Report in categories (like “proficient”) that mean
what people rely on them to mean (ready for the
next grade level, as validated by empirical studies);

* Detect the growth along progressions in the
standards (progressions are the construct; the
construct is not “difficulty”);

* Fit to population: detect growth across the distribution;

* Fit within operational constraints: time, money,
and schedule; and

* Be worthy of imitation for local periodic
assessments: show thinking and knowledge.

There are trade-offs: optimizing score reliability vs.
optimizing information about student knowledge,
reasoning and how they get the wrong (or right)
answer; optimizing ease of aggregating reports up
the hierarchy vs. value for teachers inside instruction.
The need for both implies the need to allocate time
and resources to both.

There is duplicity in purpose for assessment that
mirrors the two faces of instruction: facing ouz from
instruction toward the system audiences (manage-
ment, leadership, community, parents, students as
clients); and facing in toward student cognition and
student actions, which is where learning happens.
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Out-facing reports require summary and aggregation.
To add up, we need common units: inches to inches,
dust to dust. If we have apples and oranges, we need a
common denominator: 3 apples + 5 oranges = 8 fruit.
Adding up requires blurring distinctions. Reliability
of scores is a measure of uni-dimensionality: apples to
apples; average correlation of items to the total score
adjusted to sample size (number of items). Assess-
ments that only optimize reliable scores have small
value for the kinds instructional choices teachers
make, and encourage a view of intelligence as fixed.

Facing in, we need tools that make what the student
is doing visible to the teacher, to the student’s peers,
and in the student’s own reflection (metacognition).
We need the misspellings themselves rather than a
spelling score. Instruction should respond to the
actual spellings and provide feedback to the student
on their spelling, not on how far they are from being
a “proficient speller.” The teacher needs to know why
a student is getting the fraction problem wrong (or
right, for that matter), not just that he is. Knowing
that a student scores low on fractions has even less
value. A teacher needs to see the student working
fraction problems, see where he goes wrong, and
give feedback that responds to what that student
actually does.

Too often, education efforts marked by confounding
purposes invite the assumption of invalid models of
learning. A common example that enfeebles many in-
structional systems stems from the illusion that poor
performance is a trait of the student. This originates
in the idea that we are measuring traits of students
and a test score is a measure analogous to a student’s
height in inches. Differences in scores become differ-
ences in students. Some students are good at mathe-
matics and some are weak at mathematics. Therefore,
let’s sort students by score so we can respond to

the differences with differences in instruction. What'’s
wrong with this analysis and decision process?

One-dimensional Tests for n-dimensional Constructs

Scores distribute students along one dimension, the
trait “math,” or perhaps the trait “fractions.” There is
a “gap” between where they are on the dimension and
where their peers are. What can one do about this
gap? The answer is usually “re-teach.” In other words,
repeat the process that left a gap in the first place.

Often, the ‘gaps’are not gaps, but confusions that
have their origins in instructional materials and
classroom practice where long-term mathematics
learning was swapped away for short-term answer
getting. A well-known example is students not

realizing that fractions are quantities, numbers with
units (the unit fraction). Instead, they learned that
fractions are two numbers, one on top and one on
the bottom. Adding or dividing fractions is then a
complicated procedure for doing arithmetic on tops
and bottoms. The simple idea that adding or dividing
two fractions is a case of adding or dividing two
numbers is lost in the hard to remember procedures
that make no sense.

The reality that teaching involves leading a variety

of students through a web of trajectories needs to be
reflected in the way the assessment system defines the
goals in the system. Even though we cannot define
the web of trajectories with any precision, or locate
individual students precisely in the web; the assess-
ments should be designed to incent the system to
work in the web of trajectories, not ignore it by
pretending students are scattered along a single track.
This pretense rationalizes the view that mathematics
achievement is a trait of the student rather than the
work and responsibility of the system.

What are Standards?

The word “standards” as used in education has three
quite different meanings that slip too easily from one
to the other in the rhetoric of policy and decision-
making. Standards mean:

1. The specification of content to be learned and
proficiencies acquired (for example, CCSS).

2. The level to be reached, a cut score on a test, the
passing grade (the score required to be “profi-
cient” on a state test) — “performance stan-
dards,” “achievement levels.”

3. What people expect from themselves and each
other as actual behavior and performance; what
happens when a student does not do homework,
disrupts class, submits sloppy work; when a
teacher gives little feedback, allows poor work,
teaches without preparation; in other words, the
standards people live up to in the way they
behave and take care of their responsibilities.

In this section, we are discussing the first meaning,
but it is connected to the second when assessment
comes into play. A score is not just a point on a scale,
but a measure of how much of the content and
proficiency in the standards a student has learned.
What score range means a student is well-prepared
to succeed in subsequent years?
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The reporting categories on which the public relies we promise you that if you learn these things you
when weighing in on policy debates do not appear to will be well prepared to travel your life’s trajectory in
be valid for the purpose that the pretensions of its pursuit of your civic, economic, and personal goals.
vocabulary suggest: the meaning of “proficient” is The CCSS are merely the promise. We hope it is a
taken to mean ready and prepared to succeed at the well made promise in three ways: it builds so that
next grade level. But it is usually a quite arbitrary keeping one grade’s promise makes keeping the next
category, above a cut score established by judges in a grade’s within reach, the system is capable of keeping
dubious process that has been criticized for ignoring the promise, and the promise is worth keeping.

substantial evidence from social psychology.

It should be routine to analyze how well students

at different score levels in one grade perform in
subsequent grades. Longitudinal relationships of
scores across grades should be a core part of how
interpretation categories like “proficient” are defined
and used. Yet we see little use of research evidence
on how well ‘proficient’ students are prepared for
future success in school. Questions of validity in
standards-based assessment systems are serious, given
the uses that standards-based management systems
make of data.

'This nation has come closer than it ever has to
building a coherent education system. Nearly 80%

of the states have adopted the CCSS. What is the
next step? People are the next step. If people just
swap out the old standards and put the new ones in
old boxes and power points, into old systems and
procedures and relationships, then nothing will change.

The CCSS can be a new platform for better instruc-
tional systems and better ways of managing instruction.
The CCSS build on achievements of the last 2 decades,
but also build on lessons learned in last 2 decades,
especially lessons about time and teachers. One of the
old boxes that needs replacing is “alignment” and its
offspring, “covering standards” and “pacing guides.”
These belong to a well intended, but weak concept for
standards-based teaching and learning. Alignment is
a bunt: lucky if you get to first base. We have to score.
We need to swing at the ball. Covering standards is
what a mile wide and an inch deep is called on the
ground, in schools. Pacing means keep turning pages
regardless of what students are learning: ignore
student results. It is time to move on to something
stronger, more effective. CCSS are designed as a tool
to raise achievement, not just praise it.

What are standards? Standards are promises. Standards
promise the student, “Study what is here, do your
assignments and we promise you will learn what you
need do well on the test.” We need tests and exam-
inations designed to keep that promise by rewarding
that learning with a good score, and we need school
systems designed to keep that promise. And beyond
the tests which, after all, are part of the school system,
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Our interest in learning trajectories arises from our
belief that the normal/modal approach to instruction
must change if we are to make progress toward our
ambitious goal of preparing all of our children for
success in postsecondary institutions and rewarding
careers. We believe that teachers and students must
take increased responsibility for monitoring students’
learning and understanding, and responding to the
results of that monitoring by taking steps to keep
learning on track toward the goals of instruction, or
to get it on track if it has gone off. This should occur
continuously, and doing that requires two things:

1) Understanding what the “track” is, in some detail;
and 2) knowing what is likely to help keep a student
moving forward on it, or to get him or her back on it,
if they are having problems. Our schools haven't been
very good at either of these tasks, but in fairness,

we have not given them the tools they need to do it.

We don’t have a good description or understanding
of the key steps in the development of mathematical
knowledge and understanding, and we don’t have a
codified, warranted body of knowledge about what to
do for students who manifest particular problems or
misunderstandings at particular points along the path.
Yet we have some knowledge in both of these domains,
and we know what is required to deepen our knowledge.
And we can make some reasonable guesses about
what to do in the meantime in the areas where we
lack knowledge. So our primary recommendation is
that we should get on with this work, act on our best
guesses where necessary, and keep track of how things
work out; so that over time we can fill in the gaps.

Putting the knowledge we have into practice is a
more challenging problem. There has been a lot of
rhetoric about data-based decision-making in recent
years, and too little attention to the usefulness of the
data being provided to teachers. In general, the data
are not fine-grained enough to be useful for diagnosis
and not timely enough to support adaptive instruction.
If we want teachers to understand student learning
problems and respond quickly to help them, then we
need to work harder to figure out what kinds of tools
and support teachers need to observe and keep track
of their students and what they might do to help
them—and what happens because of that. We also
have a lot to learn about the logistics of doing this

in real classrooms with lots of students. Adaptive in-
struction may require re-organization of schools and
classrooms. And we have a lot to learn about student

motivation. It clearly is not the case that all students
are particularly interested in learning what we would
like them to learn. And if students do not increase
their work effort, monitoring their progress and
adapting instruction will not produce the gains we
need to close achievement gaps and prepare our stu-
dents to be competitive in the global economy.

Just to point out one serious problem that must be
addressed, we really don't know how many different
paths students are likely to take in mathematics and
how that number may be influenced by curriculum

or instructional choices, but we can hope that the
number is finite and perhaps small, or that it can be
effectively limited by choices of instructional trajecto-
ries without any harm to the students, or that we

can identify a (small) set of common nodes through
which almost all students will pass, even though their
paths in between those nodes may be quite diverse.

The CCII Panel has discussed this issue and others,
and the potential of learning trajectories in mathematics,
the work that has been done on them, the gaps that
exist in this work, and some of the challenges facing
developers and potential users. We have concluded
that learning trajectories hold great promise as
tools for improving instruction in mathematics, and
they hold promise for guiding the development of
curriculum and assessment as well. We are agreed
that it is important to advance the development of
learning trajectories to provide new tools for teachers
who are under increasing pressure to bring every
child to high levels of proficiency. With this goal in

mind, we offer the following recommendations:

* Need to establish a respected research field on
learning trajectories in mathematics. Some
researchers have told us that they have had trouble
getting papers and articles on learning trajectory
papers published. This is a problem for all new
research paradigms which present models that do
not fit well within the conventions of mathemat-
ics education research. Funding agencies and
research organizations need to make the impor-
tance of this research clear. The discussions about
sequence, solution methods, and learning supports
are really about what is mathematically desirable.
We need forums where these issues can be
discussed in on-going ways to build and refine our
knowledge of learning trajectories and effective
learning supports.
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* Initiate new research and development projects
to fill critical knowledge gaps. There are major
gaps in our understanding of learning trajectories
in mathematics. These include topics such as:

» Algebra

» Geometry

» Measurement

» Ratio, proportion and rate

» Development of mathematical reasoning

* Study development of students from different

cultural backgrounds and with differing initial
skill levels. We desperately need to understand
how to accelerate the learning of students who
enter school with lower literacy levels and also

to understand how cultural backgrounds and
early experiences affect developmental paths in
mathematics. Researchers recognize that the
pathways described by trajectories are not develop-
mentally inevitable and that there may be multiple
pathways to learning a given idea or practice.
They also recognize that prior experience, knowl-

An immediate national initiative is needed to support
work in these and other critical areas and fill in the
gaps in our understanding.

edge, and culture influence learning. Therefore,

there is a need to explore how diversity affects the
development and application of learning trajectories,
* Consolidate learning trajectories. For topics

such as counting, or multiplicative thinking, for
example, different researchers in mathematics
education have developed their own learning
trajectories. While there are a lot of similarities
among these trajectories, there are also some
differences, and researchers tend to defend and
advance their own ideas. The field needs to come
together to review this work and consolidate it.
This sharing could take two forms: 1) Researchers
could come to agree on common nomenclature or
ideas when possible, or 2) they could explain why
certain trajectories for the same topic are different
and why they might need to co-exist while being
tested (Barrett & Battista, forthcoming chapter
scheduled to appear in a volume edited by
Confrey, Maloney, and Nguyen, in press, 2011).

Initiate work on the integration and connec-
tions across trajectories. Developers of trajecto-
ries, and those who support their work, should
seek collaborations with other developers to
examine the connectivity and interactions across
trajectories, and to consider the implications of these
interactions for curriculum. The work on trajecto-
ries within in a field like mathematics needs to be
integrated for teachers as they cannot be expected
to track students’ progress on multiple trajectories
simultaneously. Integration also would inform
future work on learning trajectories and help
standard-setters and curriculum developers
determine what topics are most generative of
student understanding of mathematics. Some will
argue that it is too early to do this, but attempting
to do it now will inform the development of the
next generation of trajectories and help set
priorities for that work.

and whether, and how trajectories can help us
close achievement gaps in mathematics. This is
particularly relevant in urban populations or
schools with highly diverse groups of students.

Share the available learning trajectories broadly
within the R & D community. While the
existing trajectories cover only parts of the K-12
mathematics curriculum, and most have not had
extensive testing in classrooms, they can provide
useful information for groups working on state
and national standards as well as for developers
working on curriculum and assessment. The use
of research in trajectories in formulating the
Common Core State Standards (CCSS) is
evidence of their value. Although, the existing
trajectories fill in only part of the picture, they
provide clues about the structure and sequence of
the missing parts of the curriculum. At this point,
the work has not been widely shared; small groups
of researchers have been working on completion
or validation of learning trajectories they have
developed. While some of this work has been
shared through books, journal articles, or confer-
ence papers, most of it is not readily accessible
to those who need access to it. In this regard,

it is encouraging that there have been working
conferences bringing researchers working on the
development and testing of learning trajectories
together to share their methods and findings.
NSF or some other national organization should
create a website where this work, including work
in progress, can be displayed with all of the proper
caveats. Even incomplete and untested work can
be helpful to those who are working on standards,
curricula, and assessments.
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* Translate the available learning trajectories into selves better information about where they stand

usable tools for teachers. Bringing the research
on learning trajectories to developers and teachers
requires the development of new tools. Curricu-
lum developers need versions of trajectories that
stress the learning supports, the key mathematics
ideas, and the key questions for students so that
they can support classroom teachers and students
through the learning paths. Classroom teachers
need overviews so they can see the pathway clearly
before they start it. Prototypes of trajectories could
be developed in collaboration with developers and
teachers to build transitional tools and proce-
dures that encourage and support the use of
adaptive instruction and the growth of teachers.
Many current professional development programs
attempt to support development of teachers’
practical knowledge of students’ ways of thinking
in mathematics and foster new ways of conveying
instructional ideas. The learning trajectories work
is quite consistent with professional development
projects focused on pedagogical content knowledge
and needs to be incorporated into this main-
stream work.

Validate the learning trajectories. Funding
agencies should provide additional support for
research groups to validate the learning trajectories
they have developed so they can test them in
practice and demonstrate their utility. An effort
should be made to collect evidence that using
learning trajectories to inform curriculum, in-
struction, assessment design, professional devel-
opment and/or education policy results in mean-
ingful changes in instruction and gains in student
achievement. This evidence is needed to defend
the investments needed to continue the work and
fill in gaps, and to respond to skepticism ex-
pressed by various stakeholders about the value
and significance of learning trajectories.

Invest in the development of assessment tools
based on learning trajectories for use by teachers
and schools. There are fundamental differences
between assessments designed to distinguish how
students perform compared to other students on
general scales of “achievement” or ability, and as-
sessments designed to distinguish among particu-
lar levels in the development of student knowl-
edge and stages of sophistication in their under-
standing and ability to apply their knowledge of
mathematics. Assessment tools of the latter type
are needed to build and test trajectories and to
provide teachers with the diagnostic information
they need to adapt instruction to meet the needs
of their students and also to give students them-

with reference to their learning goals. Adequate
development of assessments of this sort will re-
quire fundamental advances in psychometric meth-
ods and supporting technologies, and that too will
deserve increased investment.

Encourage more collaboration among mathemat-
ics education researchers, assessment experts,
cognitive scientists, curriculum and assessment
developers, and classroom teachers. Inadequate
communication among the groups that have an
interest in the development and testing of learn-
ing trajectories in mathematics is an obstacle to
further progress. There is a need to build better
understanding and more collaboration across
these domains. Funding agencies should seek to
foster better and more frequent communication
among these communities. The National Science
Foundation (NSF), the Hewlett Foundation, and
the Pearson Foundation have supported several
meetings of this type, but more needs to be done
to foster collaborative work. NSF or another
funder might consider sponsoring “state of the
work” conferences annually, or convening various
stakeholders at special sessions (e.g., organizations
convening at NCTM’s annual conference or other
national meetings). They also might consider
funding centers to work on learning trajectories
and curriculum development where these different
kinds of expertise and experience might be convened.

* And, finally as we undertake this work, remem-

ber that it is the knowledge of the mathematics
education research that will empower teachers,
not just the data from the results of assessments.
This is extremely important and needs to be more
clear from the outset and reinforced regularly.
Otherwise some will seek to develop and promote
tools —new technologies, new assessments, etc.—
to substitute for teacher knowledge. Good tools,
as we argue above, are needed, but they will have
powerful effects only if they are placed in the hands
of practitioners who have a strong command of
their domain and an inclination to use the knowl-
edge base in their field and learn from others to
improve their practice. If we look at this problem
as one of continuous improvement, then we will
not expect practitioners to be expert in all parts
of their domain, but we will expect them to devel-
op expertise, and to work collaboratively with
others whose knowledge complements their
own. And we will expect them to contribute to
the knowledge base by constructing and testing
hypotheses in partnership with other teachers

and with researchers.
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Why Should These Steps Be Taken?

In CPRE’s earlier publication on the development
and use of learning progressions in science (Corcoran,
Mosher, & Rogat, 2009), we argued that learning
progressions could help us shape, test, and refine poli-
cies and practices in the areas of curriculum, assess-
ment, teacher education, and professional develop-
ment and improve coherence and alignment across
these domains. Learning trajectories in mathematics
have that same potential.

First and foremost, learning trajectories translated
into usable tools can help teachers rethink instruction,
assessment, and interventions for students who fall
behind. They will make it possible to improve teacher
diagnosis of student understanding, and enable teach-
ers to practice adaptive instruction. Trajectories could
provide teachers with the frameworks, tools, and
resources needed to transform pedagogical content
knowledge from a precious concept to an operational
part of their practices.

Learning trajectories will help curriculum developers
build mathematics programs that are more focused,
better sequenced, and more coherent. New curricula
should be consistent with established learning trajec-
tories and their key features should be incorporated into
instructional materials (e.g., a coherent developmental
sequence based on research, specification of learning
performances, and valid assessments that support di-
agnoses derived from evidence of the learning perfor-
mances). New curricula also offer opportunities to test
and revise hypothetical trajectories addressing gaps in
our knowledge of mathematics.

Continued work on learning trajectories can help us
revise and refine the CCSS over time, and rethink
state assessments and professional development. By
collaborating with researchers and developers on pi-
loting materials and assessments linked to trajectories,
and by inviting researchers to collaborate on tasks
such as standards revision, curriculum selection, a
ssessment selection, and professional development,
we can advance the work and contribute to the growth
of our knowledge.

Learning trajectories also could contribute to im-
provements in the design and operation of teacher
education programs as well as the design of programs
provided by local and regional professional development
providers. For example, pre-service and professional
development programs could help teachers develop
deeper understanding of the central ideas in mathe-
matics, how students typically master these ideas and
develop more sophisticated understanding over time,

and how to diagnose student progress and instructional
needs. Trajectories could be used to help novice teach-
ers understand how student understanding develops

over time and how instruction aftects their development.

Learning trajectories also can help to leverage the
work done by mathematics education researchers and
learning scientists by developing a body of work in
the content areas that is immediately useful to policy-
makers and practitioners. Trajectories could bring fo-
cus to research; and instead of undertaking many
small disconnected studies, the field could begin to
build programs of research addressing the gaps in the
progression work. This approach would build a stron-
ger knowledge base for teaching and for the develop-
ment of instructional tools and supports. The research
on trajectories could highlight the areas where more
research is badly needed (e.g., research on topics lack-
ing trajectories, targeting specific age levels where our
knowledge is thin, addressing the needs of culturally
or linguistically diverse groups who do not perform
well in mathematics, etc.).

Learning trajectories have enormous potential, but

as the recommendations listed above make clear,
there is a great deal of work to be done to realize this
potential. If we are serious about making our students
college- and career-ready, and about eliminating
achievement gaps, this is the work that must be done.
Pursuing quick fixes and structural solutions to the
problems of public education will not do the job. As
we have learned in medicine, agriculture, and other
fields, there is no substitute for developing basic
knowledge and translating it into tools that practitioners
can use to solve the problems they face everyday. As
we recommended for science education, a serious
research and development effort in mathematics is
needed to provide our teachers with the tools they
need to do the job. Investing in learning trajectories
would not solve all of our problems, but it would put
us on the right path toward finding solutions.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction






O SS




REFERENCES

ACT (2010). A first look at the common core and college and career readiness. Retrieved from
http://www.act.org/research/policymakers/pdf/FirstLook.pdf

Alonzo, A., & Gotwals, A. (Eds.) (in press). Learning progressions in science. Rotterdam, The Netherlands:
Sense Publishers. Manuscript in preparation.

Barrett, J. E., & Battista, ML.T. (in press 2011). A case study of different learning trajectories for length
measurement. In J. Confrey, A. Maloney, and K. Nguyen (Eds.), Learning over time: Learning trajectories in
mathematics education. Raleigh, North Carolina: Information Age Publishers.

Barrett, J., Clements, D., Cullen, C., McCool, J., Witkowski, C., & Klanderman, D. (2009, April). Children’s
abstraction of iterative units to measure linear space: A trajectory. Paper presented at the Annual Meeting of
the American Educational Research Association (AERA). San Diego, California.

Battista, M. T. (2006). Understanding the development of students’ thinking about length. Teaching Children
Mathematics, 13(3), 140-146.

Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second Handbook
of Research on Mathematical Teaching and Learning (pp. 843-908). Reston, VA: National Council of Teachers
of Mathematics.

Behr, M. & Post, T. (1992). Teaching rational number and decimal concepts. In T. Post (Ed.), Teaching
mathematics in grades K-8: Research-based methods (2nd ed.) (pp. 201-248). Boston: Allyn and Bacon.

Behr, M., Wachsmuth, I., Post, T., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical
teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341.

Bezuk, N. S., & Bieck, M. (1993). Current research on rational numbers and common fractions: Summary and
implications for teachers. In D.T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics
(pp. 118-136). New York: Macmillan.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education. Principles, Policy
and Practice, 5(1), 7-74.

Bransford, J., Brown, A., & Cocking, R. (2000). How people learn.: Brain, mind, experience, and school. Washington,
D.C.: National Academy Press.

CCSSO/NGA. (2010). Common core state standards for mathematics. Washington, DC: Council of Chief
State School Officers and the National Governors Association Center for Best Practices. Retrieved from
http://corestandards.org/

Clements, D.H. (1999). Teaching length measurement: Research challenges. Schoo/ Science and Mathematics, 99
(1),5-11.

Clements, D., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and
Learning, 6(2), 81-89.

Clements, D., & Sarama, J. (2007a). Building Blocks—SRA Real Math, Grade PreK. Columbus, OH: SRA/
McGraw-Hill.

Clements, D., & Sarama, ]. (2007b). Early childhood mathematics learning. In F. K. Lester Jr. (Ed.), Second
handbook of research on mathematics teaching and learning (Vol. 1, pp. 461-555). New York: Information Age
Publishing.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction



REFERENCES

Clements, D. H., & Sarama, ]. (2007¢). Effects of a preschool mathematics curriculum: Summative research on
the Building Blocks project. Journal for Research in Mathematics Education, 38,136-163.

Clements, D., & Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool
mathematics curriculum. American Educational Research Journal, 45(2), 443-494.

Clements, D., & Sarama, J. (2009). Learning and Teaching Early Math: The learning Trajectories Approach.
New York: Routledge.

Clements, D., Swaminathan, S., Hannibal, M., & Sarama, J. (1999). Young children’s concepts of shape. Journal
for Research in Mathematics Education, 30(2),192-212.

Cohen, D., Raudenbush, S., & Ball, D. (2003). Resources, instruction, and research. Educational Evaluation
and Policy Analysis, 25(2), 119-142.

The College Board (n.d.). Archived AP Data: Exam data from administrations since 1997. Retrieved from
http://professionals.collegeboard.com/data-reports-research/ap/archived

Conlfrey, J. (2008). 4 synthesis of the research on rational number reasoning: A learning progressions approach to synthesis.
Paper presented at The 11th International Congress of Mathematics Instruction., Monterrey, Mexico.

Confrey, J., & Maloney, A. P. (in press 2010). Next generation digital classroom assessment based on learning
trajectories in mathematics. In C. Dede and Richards, ]. (Eds), Steps towards a digital teaching platform.
New York: Teachers College Press.

Confrey, ., Maloney, A., & Nguyen, K. (in press, 2011). Learning over time: Learning trajectories in mathematics
education. Charlotte, NC: Information Age Publishers.

Confrey, J., Maloney, A., Nguyen, K., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation
of rational number reasoning using learning trajectories. Paper presented at The 33rd Conference of the Interna-
tional Group for the Psychology of Mathematics Education, Thessaloniki, Greece.

Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning Progressions in Science: An Evidence-based Approach to
Reform (Research Report #RR-63). Philadelphia: Consortium for Policy Research in Education.

Cross, C., Woods, T., Schweingruber, H. (Eds.) (2009). Mathematics in early childhood: Learning paths toward
excellence and equity. Committee on Early Childhood Mathematics, Center for Education, National Research
Council. Washington, D.C.: National Academy Press.

Dweck, C. S.(1999). Self-theories: Their role in motivation, personality and development. Philadelphia:
'The Psychology Press.

Dweck, C. S. (2002). Messages that motivate: How praise molds students’ beliefs, motivation, and performance
(in surprising ways). In J. Anderson (Ed.), Improving academic achievement (pp. 38-60). New York: Academic
Press.

Elliot, A.J., & Murayama, K. (2008). On the measurement of achievement goals: Critique, illustration, and
application. Journal of Educational Psychology, 100(3), 613-628.

Gelman, R., & Gallistel, C. (1986). The child’s understanding of number. Cambridge, MA: Harvard University Press.
Ginsburg, H. (1983). The development of mathematical thinking. New York: Academic Press.

Glasersfeld, E. V. (1995). Sensory experience, abstraction, and teaching. In L. P. Steffe & J. Gale (Eds.),
Constructive Education (pp. 369-383). Mahwah, NJ: Lawrence Erlbaum Associates.

Greenough, W.'T,, Black, J. E., & Wallace, C.S. (1987). Experience and brain development. Children Development,
58:539-559.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction



REFERENCES

Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA,
MIT Press.

Kemple, ]. (2010, November). Children first and student outcomes: 2003-2010. Paper presented at Children’s First
retrospective conference, New York City, NY: New York City Reform Retrospective Project.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, D.C.:
National Academy Press.

Maloney, A. P., & Confrey, J., (2010, July). Zhe construction, refinement, and early validation of the equipartitioning
learning trajectory. Proceedings of the 9th International Conference of the Learning Sciences, Chicago.

Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an
experimental curriculum. Journal for Research in Mathematics Education, 30 (2),122-147.

Murata, A., & Fuson, K. C. (2006). Teaching as assisting individual constructive paths within an interdependent
class learning zone: Japanese first graders learning to add using 10. Journal for Research in Mathematics Education,

37(5), 421-456.

Murayama, K., & Elliot, A. J. (2009). The joint influence of personal achievement goals and classroom goal
structures on achievement-relevant outcomes. Journal of Educational Psychology, 101(2), 432-447.

National Mathematics Advisory Panel. Foundations for Success: The Final Report of the National Mathematics
Advisory Panel, U.S. Department of Education: Washington, DC, 2008.

Niihrenborger, M. (2001). Insights into children’s ruler concepts—Grade-2 students’ conceptions and knowledge
of length measurement and paths of development. In M.V.D. Heuvel-Panhuizen (Ed.), Proceedings of the 25th
Conference of the International Group for the Psychology in Mathematics Education, 3, 447-454. Utrecht, The
Netherlands: Freudenthal Institute.

Nunes, T., Light, P., & Mason, J. H. (1993). Tools for thought. Learning and Instruction, 3(1), 39-54.

Pellegrino, J., Chudowsky, N., & Glaser, R. (2001). Knowing what students know: The science and design of
educational assessment. Committee on the Foundations of Assessment, National Research Council.
Wiashington, D.C.: National Academy Press.

Petit, M., Laird, R., & Marsden, E. (2010). 4 focus on fractions: Bringing Research to the Classroom. New York:
Routledge.

Petit, M., & Zawojewski, J. (2010). Formative Assessment in the Elementary Classroom. In D. Lambdin & F.
Lester (Eds.), Teaching and learning mathematics: Translating research for elementary teachers. Reston, VA:
National Council of the Teachers of Mathematics.

Piaget, J. (1970). Genetic epistemology (E. Duckworth, translation). New York: Columbia University.

Rampey, B., Dion, G., & Donahue, P. (2009). The nation’s report card: Trends in academic progress in reading
and mathematics 2008. National Assessment of Educational Progress.
Retrieved from http://nces.ed.gov/nationsreportcard/pubs/main2008/2009479.asp#section5

Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods and applications.
New York: Guildford.

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18,119-144.

Sarama, J., & Clements, D. H. (2009a). Early childhood mathematics education research: Learning trajectories for young
children. New York: Routledge.

Sarama, J., & Clements, D. H. (2009b, April). Scaling up successful interventions: Multidisciplinary perspectives.
Paper presented at the American Educational Research Association, San Diego, CA.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction



REFERENCES

Saxe, G. B., Shaughnessy, M. M., Shannon, A., Langer-Osuna, ]. M., Chinn, R., & Gearhart, M. (2007). Learning
about fractions as points on a number Line. In W. G. Martin, M. E. Strutchens, & P. C. Elliott (Eds.), Zhe
learning of mathematics: Sixty-ninth yearbook (pp. 221-237). Reston, VA: National Council of Teachers of
Mathematics.

Saxe, G., Taylor, E., Mclntosh, C., & Gearhart, M. (2005). Representing fractions with standard notation:
A developmental analysis. Journal for Research in Mathematics Education, 36(2), 137-157.

Schmidt, W. H., McKnight, C. C., & Raizen, S. A. (1997). 4 splintered vision: An investigation of U.S. science and
mathematics education executive summary. Washington, D.C: U.S. National Research Center for the Third
International Mathematics and Science Study, Michigan State University.

Sherin, B., & Fuson, K. (2005). Multiplication strategies and the appropriation of computational resources.
Journal for Research in Mathematics Education, 36(4), 347-395.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructive perspective. Journal for Research
in Mathematics Education, 26(2), 114-145.

Simon, M., Saldanha, L., McClintock, E., Karagoz Akar, G., Watanabe, T., & Ozgur Zembat, 1. (2010). A
developing approach to studying students’ learning through their mathematical activity. Cognition and Instruc-
tion, 28(1), 70-112.

Sophian, C. (2007). Tke origins of mathematical knowledge in childhood. New York: Routledge.
Steffe, L. P., & Cobb, P. (1988). Construction of arithmetical meanings and strategies. New York: Springer-Verlag.
Stefte, L., & Olive, J. (2009). Children’s fractional knowledge. New York: Springer.

Tyler, D., & McKenzie, B. (1990).Spatial updating and training effects in the first year of human infancy.
Journal of Experimental Child Psychology, 50(3), 445-461.

Van den Heuvel-Panhuizen, M. (Ed.) (2008). Children learn mathematics: A learning-teaching trajectory with
intermediate attainment targets for calculation with whole numbers in primary school. Rotterdam, The Netherlands:

Sense Publishers.

Vermont Mathematics Partnership’s Ongoing Assessment Project (VMP OGAP) (2003).
Unpublished student work samples and data. Montpelier, Vermont.

Vermont Mathematics Partnership’s Ongoing Assessment Project (VMP OGAP) (2005).
Unpublished student work samples and data. Montpelier, Vermont.

Vermont Mathematics Partnership’s Ongoing Assessment Project (VMP OGAP) (2007).
Unpublished student work samples and data. Montpelier, Vermont.

Vygotsky, L. (1978). Mind in society. Cambridge, MA: Harvard University Press.

West, P., Rutstein, D., Mislevy, R., Liu, J., Choi, Y., Levy, R.,...Behrens, J. (2010, August). A bayesian network
approach to modeling learning progressions and task performance. National Center for Research on Evaluation,

Standards, and Student Testing. UCLA: Los Angeles.
Wilson, M. ( 2005).Constructing measures: An Item Response Modeling approach. Mahwah, NJ: Erlbaum.

Wiser, M., Smith, C. L., Asbell-Clarke, J., & Doubler, S. (2009, April). Developing and refining learning progression
Jfor matter: The inquiry project, Grades 3-5. Paper presented at the Annual Meeting of the American Educational
Research Association, San Diego.

Wu, H. (2008). Fractions, decimals and rational numbers.
Retrieved from http://math.berkeley.edu/~wu/NMPfractions4.pdf.

Xu, F, Spelke, E., & Goddard, S. (2005). Number sense in human infants. Developmental Science, §(1), 88-101.

LEARNING TRAJECTORIES IN MATHEMATICS: A Foundation for Standards, Curriculum, Assessment, and Instruction






O SS




APPENDIX A:

A SAMPLE OF MATHEMATICS LEARNING TRAJECTORIES

Introduction

'This table below presents a sample of mathematics
learning trajectories, along with a few examples

of research that supports the development of such
trajectories. It is not meant to be exhaustive. Our goal
is to provide a sense of the range of topics for which
learning trajectories have been developed, and enough
detail about the examples to provide a glimpse into
their content. The table includes the work of those
who have contributed to this report, together with
some other examples of significant mathematics learn-
ing trajectory research.

Some differences and similarities among learning tra-
jectories are clear from the table, but others are less
apparent; several similarities and differences not
captured in the table are worth noting briefly here.
For example, some researchers focus primarily on
instructional tasks or activities that teachers and
others can use to elicit and assess children’s mathe-
matical understandings (e.g., Battista, 2006, 2007)
whereas others focus more on tasks designed to
support learners’ movement from one level of under-
standing to another in specific ways (Clements &
Sarama, 2009; Barrett et al., 2009; Sherin & Fuson,
2005; Confrey et al., 2009). In many cases, this
distinction is hard to make (and in some cases the
distinction doesn’t matter), but the purpose of a
given learning trajectory does make a difference for
the kinds of tasks or activities that get included in a
trajectory. The result is that some present a continuum
of tasks that are well-connected and build on each
other in specific ways over time (e.g., Clements &
Sarama 2009, Barrett et al., 2009), others present
tasks that connect across topical areas of school mathe-
matics (e.g., Confrey et al., 2009), and others offer
more detailed guidance to teachers in understanding the
capacities and misconceptions of their students at
different points in their learning of a particular topic
(e.g., Battista, 2006; Sherin & Fuson, 2005).

A related difference is the degree to which a strictly
ordered sequence of understandings and abilities is to
be expected or supported: in some research programs,
learners’ movements among levels are varied, with
multiple routes or paths to higher levels (e.g., Battista,
2006, 2007), whereas in other programs, learners are

expected and encouraged to move through levels in a
certain order (e.g., Clements & Sarama, 2009, Barrett
et al., 2009). Others have found evidence that supports
a hybrid of strict sequencing for some abilities and
tasks, with multiple possible pathways to others (e.g.,
Confrey et al., 2009). There is a resulting difference
in emphasis—on developing descriptions of different
levels of children’s understanding and ability vs. iden-
tifying the most effective sequence for moving learn-
ers to higher levels of understanding of a given top-
ic—but of course, most learning trajectory research
does both of these, at least to some extent.

While all researchers in this field are aware of typical
pre-coherent ways of thinking that are often labeled
‘misconceptions’, they focus on these in different ways
in their work. Some of Battista’s “levels of sophistica-
tion,” for example, are themselves examples of “incor-
rect reasoning” that are precursors to important cor-
rections in reasoning. Confrey et al. (2009) include
“predictable patterns of errors” as components of tra-
jectories, and include “obstacles” in their visual repre-
sentation of trajectories as paths through a conceptual
corridor. Clements and Sarama (2009) include fairly
detailed accounts of typical misconceptions in their
descriptions of the levels, along with direct quotes
from children in their studies to illustrate these. The
diagnostic value of these different ways of focusing on
incorrect, immature, or provisional student thinking
makes a difference both for teachers and for research-
ers interested in understanding and documenting
progress from prior knowledge to new knowledge.

While there are also differences in grain size and level
of detail included for each level or stage, and obvious
differences in time span covered with each trajectory,
the significance of these differences has more to do
with the different purposes for which they have been
developed—along with the constraints on resources
available for the particular research programs—rather
than a fundamental disagreement about ideal grain
size or appropriate time span.”” As with learning
progressions in science, the trajectories share a com-
mon purpose in developing instructional sequences
that are directly linked to empirical evidence of what
‘works’ (Corcoran, Mosher, & Rogat, 2009, p.8).

17 Appropriate grain size was a point of contention during the August 2009 meetings held at the Friday Institute at NCSU, but the issue was
framed by a larger discussion about the different purposes that learning trajectories serve.
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A SAMPLE OF MATHEMATICS LEARNING TRAJECTORIES

Because learning trajectories weave together what

we know about cognitive development, instructional
practice, and the coherence of mathematical ideas,
most learning trajectory research aims to answer
questions about what ‘works’ by evaluating empirical
evidence through all three lenses, at least to some
extent. That is, the aim is to develop trajectories that:
1) are chronologically predictive, in the sense that
students do—or can, with appropriate instruction—
move successfully from one level to the next more or
less in the predicted sequence of levels; 2) yield posi-
tive results, for example, deepened conceptual under-
standing and transferability of knowledge and skills,
as determined by external assessment or by assessment
built into the learning trajectory; and 3) have learning
goals that are mathematically valuable, that is align
with broad agreement on what mathematics students
ought to learn (now presumably reflected in the

Common Core State Standards (CCSS).

At a more basic level, there is fundamental agreement
among learning trajectory researchers on the focus on
1) mathematical thinking that is typical of students at
different ages and grade levels; 2) major conceptual
shifts that result from the coalescence of smaller
shifts; and 3) getting the sequence right, based on (1)
and (2), for teaching pivotal mathematical ideas and
concepts.”” Now that the CCSS for mathematics

are out, they might serve to define more clearly the
agreed upon goals for which specific learning trajec-
tories must still be developed, insofar as they describe
the pivotal ideas and concepts of school mathematics.
Getting the sequence right, however, is not guaran-
teed by these descriptions. It involves testing the
hypothesized dependency of one idea on another,
with particular attention to areas where cognitive
dependencies are potentially different from logical
dependencies as a mathematician sees them.

As the empirical evidence grows for what works best
to move students up the steepest slopes of learning, or
most efficiently through a particular terrain of mathe-
matical insights and potential misconceptions, learn-
ing trajectory researchers are answering questions
about when instruction should follow a logical sequence
of deduction from precise definitions and when in-
struction that builds on a more complex mixture of
cognitive factors and prior knowledge is more eftec-
tive. As stated above, this table does not represent all
of the research working to answer these questions. It
does, however, provide a sense of the kinds of answers

that are already available, as well as some sense of the
key areas of mathematics and age groups for which
important questions remain.

18 Developing a more precise way to talk about “major” conceptual shifts (and to distinguish them from not so major shifts) is one area for
further theoretical and empirical investigation. Note that this issue shows up in the science work as well (see Wiser et al., 2009).
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APPENDIX B: OGAP MULTIPLICATIVE REASONING FRAMEWORK—MULTIPLICATION

September 2009
OGAP Multiplicative Reasoning Framework - Multiplication
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