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Foreword

A major goal of the Center on Continuous Instruc-
tional Improvement (CCII) is to promote the use of 
research to improve teaching and learning. In pursuit 
of that goal, CCII is assessing, synthesizing and 
disseminating findings from research on learning 
progressions, or trajectories, in mathematics, science, 
and literacy, and promoting and supporting further 
development of progressions as well as research on 
their use and effects. CCII views learning progres-
sions as potentially important, but as yet unproven, 
tools for improving teaching and learning, and 
recognizes that developing and utilizing this potential 
poses some challenges. This is the Center’s second 
report; the first, Learning Progressions in Science: An 
Evidence-based Approach to Reform, by Tom Corcoran, 
Frederic A. Mosher, and Aaron Rogat was released  
in May, 2009.

First and foremost, we would like to thank Pearson 
Education and the William and Flora Hewlett 
Foundation for their generous support of CCII’s  
work on learning progressions and trajectories in 
mathematics, science, and literacy. Through their 
continued support, CCII has been able to facilitate 
and extend communication among the groups that 
have an interest in the development and testing of 
learning trajectories in mathematics.  

CCII initiated its work on learning trajectories in 
mathematics in 2008 by convening a working group 
of scholars with experience in research and develop-
ment related to learning trajectories in mathematics 
to review the current status of thinking about the 
concept and to assess its potential usefulness for 
instructional improvement. The initial intention was  
to try to identify or develop a few strong examples  
of trajectories in key domains of learning in school 
mathematics and use these examples as a basis for 
discussion with a wider group of experts, practitio-
ners, and policymakers about whether this idea has 
promise, and, if so, what actions would be required to 
realize that promise. However, as we progressed, our 
work on learning progressions intersected with the 
activities surrounding the initiative of the Council of 
Chief State School Officers (CCSSO), and the 
National Governors Association (NGA) to recruit 
most of the states, territories, and the District of 
Columbia to agree to develop and seriously consider 
adopting new national “Common Core College and 
Career Ready” secondary school leaving standards  
in mathematics and English language arts.  This 

process then moved on to the work of mapping those 
standards back to what students should master at 
each of the grades K through 12 if they were to be  
on track to meeting those standards at the end of 
secondary school.  The chair of CCII’s working group 
and co-author of this report, Phil Daro, was recruited 
to play a lead role in the writing of the new CCSS, 
and subsequently in writing the related K-12 
year-by-year standards.

Given differences in perspective, Daro thought it 
would be helpful for some of the key people leading 
and making decisions about how to draft the CCSS 
for K-12 mathematics to meet with researchers who 
have been active in developing learning trajectories 
that cover significant elements of the school math-
ematics curriculum to discuss the implications of the 
latter work for the standards writing effort.  

This led to a timely and pivotal workshop attended  
by scholars working on trajectories and representa-
tives of the Common Core Standards effort in 
August, 2009. The workshop was co-sponsored by 
CCII and the DELTA (Diagnostic E-Learning 
Trajectories Approach) Group, led by North Carolina 
State University (NCSU) Professors Jere Confrey  
and Alan Maloney, and hosted and skillfully orga-
nized by the William and Ida Friday Institute for 
Educational Innovation at NCSU The meeting 
focused on how research on learning trajectories 
could inform the design of the Common Core 
Standards being developed under the auspices of the 
Council of Chief State School Officers (CCSSO)  
and the National Governor’s Association (NGA).  

One result of the meeting was that the participants 
who had responsibility for the development of the 
CCSS came away with deeper understanding of the 
research on trajectories and a conviction that they had 
promise as a way of helping to inform the structure of 
the standards they were charged with producing.  
Another result was that many of the members of the 
CCII working group who participated in the meeting 
then became directly involved in working on and 
commenting on drafts of the proposed standards.  
Nevertheless we found the time needed for further 
deliberation and writing sufficient to enable us to put 
together this overview of the current understanding 
of trajectories and of the level of warrant for their use.



6

LEARNING  TRAJECTORIES IN MATHEMATICS:  A Foundation for Standards, Curriculum, Assessment, and Instruction

We are deeply indebted to the CCII working group 
members for their thoughtful input and constructive 
feedback, chapter contributions, and thorough reviews 
to earlier drafts of this report. The other working 
group members (in alphabetical order) include: 

Michael Battista, Ohio State University

Jeffrey Barrett, Illinois State University

Douglas Clements, SUNY Buffalo 

Jere Confrey, NCSU

Vinci Daro, Mathematics Education Consultant

Alan Maloney, NCSU

Marge Petit, Marge Petit Consulting, MPC

Julie Sarama, SUNY Buffalo

Yan Liu, Consultant 

We would also like to thank the key leaders and  
developers who participated in the co-sponsored  
August 2009 workshop. Participants, in alphabetical  
order, include:

Jeff Barrett, Illinois State University

Michael Battista, Ohio State University

Sarah Berenson, UNC-Greensboro

Douglas Clements, SUNY Buffalo

Jere Confrey, NCSU 

Tom Corcoran, CPRE Teachers College, Columbia 
University

Phil Daro, SERP

Vinci Daro, UNC

Stephanie Dean, James B. Hunt, Jr. Institute

Kathy Heid, Penn State University 

Gary Kader, Appalachian State University 

Andrea LaChance, SUNY-Cortland

Yan Liu, Consultant

Alan Maloney, NCSU

Karen Marongelle, NSF

Jim Middleton, Arizona State University

Carol Midgett, Columbus County School District, 
NC

Scott Montgomery, CCSSO

Frederic A. Mosher, CPRE Teachers College, 
Columbia University

Wakasa Nagakura, CPRE Teachers College, Colum-
bia University

Paul Nichols, Pearson

Barbara Reys, University of Missouri, Columbia

Kitty Rutherford, NC-DPI
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We also would like to express our gratitude to Martin 
Simon, New York University; Leslie Steffe, University 
of Georgia; and Karen Fuson, Northwestern Univer-
sity, for their responses to a request for input we sent 
out to researchers in this field, and in the case of 
Simon, for his extended exchange of views on these 
issues.  They were extremely helpful to us in clarifying 
our thinking on important issues, even though they 
may not fully accept where we came out on them.

Last but not least, we must recognize the steadfast 
support and dedication from our colleagues in 
producing this report. Special thanks to Vinci Daro  
and Wakasa Nagakura for their skillful editing and 
invaluable feedback throughout the writing process. 
Special thanks to Kelly Fair, CPRE’s Communication 
Manager, for her masterful oversight of all stages of 
the report’s production.

foreword
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foreword

This report aims to provide a useful introduction to 
current work and thinking about learning trajectories 
for mathematics education; why we should care about 
these questions; and how to think about what is being 
attempted, casting some light on the varying, and 
perhaps confusing, ways in which the terms trajectory, 
progression, learning, teaching, and so on, are being 
used by us and our colleagues in this work. 

Phil Daro, Frederic A. Mosher, and Tom Corcoran
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There is a leading school of thought in American 
education reform circles that basically is agnostic 
about instruction and practice. In its purest form,  
it holds that government agencies shouldn’t try to 
prescribe classroom practice to frontline educators. 
Rather, the system should specify the student 
outcomes it expects and hold teachers and schools 
accountable for achieving those outcomes, but leave 
them free to figure out the best ways to accomplish 
those results. This is sometimes framed as a trade  
off of increased autonomy or empowerment in  
return for greater accountability. A variation on this 
approach focuses on making structural and governance 
modifications that devolve authority for instructional 
decisions to local levels, reduce bureaucratic rules and 
constraints—including the constraints of collective 
bargaining contracts with teachers’ unions—and 
provide more choice to parents and students, opening 
the system to market forces and incentives, also 
constrained only by accountability for students’ 
success. A different version of the argument seems  
to be premised on the idea that good teachers are 
born not made, or taught, and that the system can  
be improved by selecting and keeping those teachers 
whose students do well on assessments, and by 
weeding out those whose students do less well, 
without trying to determine in detail what the 
successful teachers do, as one basis for learning how  
to help the less successful teachers do better.

This agnosticism has legitimate roots in a recognition 
that our current knowledge of effective instructional 
practices is insufficient to prescribe precisely the 
teaching that would ensure that substantially all 
students could reach the levels of success in the core 
school subjects and skills called for in the slogan 
“college and career ready.” CCII doesn’t, however, 
accept the ideas that we know nothing about effective 
instruction, or that it will not be possible over time to 
develop empirical evidence concerning instructional 
approaches that are much more likely to help most 
students succeed at the hoped-for levels. It seems to 
us that it would be foolish not to provide strong 
incentives or even requirements for teachers to use 
approaches based on that knowledge, perhaps with 
provisions for waivers to allow experimentation to 
find even better approaches. Conversely, it is not 
reasonable, or professional, to expect each teacher 
totally to invent or re-invent his or her own approach 
to instruction for the students he or she is given to teach. 

To illustrate the scope of the problem facing Ameri-
can schools, a recent study by ACT Inc. (2010) 
looked at how 11th-grade students in five states that 
now require all students to take ACT’s assessments 
(as opposed to including only students who are 
applying to college) did on the elements of their 
assessments that they consider to be indicative of 
readiness to perform effectively in college. They offer 
this as a rough baseline estimate of how the full  
range of American students might perform on new 
assessments based on the common core standards 
being developed by the two “race to the top” state 
assessment consortia. The results were that the 
percentage of all students who met ACT’s proxy for 
college ready standards ranged from just over 30% to 
just over 50% for key subjects, and for African-Amer-
ican students it fell to as low as under 10% on some 
of the standards. The percentages for mathematics 
tended to be the lowest for any of the subjects tested. 
And these results are based on rather conventional 
assessments of college readiness, not performance 
items that require open-ended and extended effort,  
or transfer of knowledge to the solution of new and 
wide-ranging problems, which would be even more 
challenging reflections of the larger ambitions of 
common core reforms. 

This study is useful in forcing us to attend to another 
of our education “gaps”—the gap between the 
ambitious goals of the reform rhetoric and the actual 
levels of knowledge and skill acquired by a very large 
proportion of American secondary school students—
and the problem is not limited to poor and minority 
students, though it has chronically been more serious 
for them. Closing this gap will not be a trivial 
undertaking, and it will not happen in just a few 
years, or in response to arbitrary timetables such as 
those set by the NCLB legislation or envisioned by 
the Obama administration. A great many things will 
have to happen, both inside and outside of schools,  
if there is to be any hope of widespread success in 
meeting these goals. Certainly that should include 
policies that improve the social and economic 
conditions for children and families outside of school, 
and in particular, families’ ability to support their 
children’s learning and to contribute directly to it. 
Nevertheless, it also is clear that instruction within 
schools will have to become much more responsive  
to the particular needs of the students they serve.  
If substantially all students are to succeed at the 
hoped-for levels, it will not be sufficient just to meet 

executive summary
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the “opportunity to learn” standard of equitably 
delivering high- quality curricular content to all 
students, though that of course is a necessary step. 
Since students’ learning, and their ability to meet 
ambitious standards in high school, builds over 
time—and takes time—if they are to have a reason-
able chance to make it, their progress along the path 
to meeting those standards really has to be monitored 
purposefully, and action has to be taken whenever it  
is clear that they are not making adequate progress. 
When students go off track early, it is hard to bet on 
their succeeding later, unless there is timely intervention.

The concept of learning progressions offers one 
promising approach to developing the knowledge 
needed to define the “track” that students may be on, 
or should be on. Learning progressions can inform 
teachers about what to expect from their students. 
They provide an empirical basis for choices about 
when to teach what to whom. Learning progressions 
identify key waypoints along the path in which 
students’ knowledge and skills are likely to grow and 
develop in school subjects (Corcoran, Mosher, & 
Rogat, 2009). Such waypoints could form the 
backbone for curriculum and instructionally mean-
ingful assessments and performance standards. In 
mathematics education, these progressions are more 
commonly labeled learning trajectories. These 
trajectories are empirically supported hypotheses 
about the levels or waypoints of thinking, knowledge, 
and skill in using knowledge, that students are likely 
to go through as they learn mathematics and, one 
hopes, reach or exceed the common goals set for their 
learning. Trajectories involve hypotheses both about 
the order and nature of the steps in the growth of 
students’ mathematical understanding, and about the 
nature of the instructional experiences that might 
support them in moving step by step toward the goals 
of school mathematics. 

The discussions among mathematics educators that 
led up to this report made it clear that trajectories are 
not a totally new idea, nor are they a magic solution 
to all of the problems of mathematics education. They 
represent another recognition that learning takes 
place and builds over time, and that instruction has to 
take account of what has gone before and what will 
come next. They share this with more traditional 
“scope and sequence” approaches to curriculum devel-
opment. Where they differ is in the extent to which 
their hypotheses are rooted in actual empirical study 
of the ways in which students’ thinking grows in re-
sponse to relatively well specified instructional experi-
ences, as opposed to being grounded mostly in the 
disciplinary logic of mathematics and the conven-

tional wisdom of 
practice. By focusing 
on the identification 
of significant and 
recognizable clusters 
of concepts and con-
nections in students’ 
thinking that repre-
sent key steps for-
ward, trajectories 
offer a stronger basis 
for describing the 
interim goals that 
students should meet 
if they are to reach 
the common core 
college and career 
ready high school 
standards. In addi-
tion, they provide 
understandable points of reference for designing 
assessments for both summative and formative  
uses that can report where students are in terms of 
those steps, rather than reporting only in terms of 
where students stand in comparison with their peers.  
Reporting in terms of scale scores or percentiles does 
not really provide much instructionally useful feedback. 

However, in sometimes using the language of 
development, descriptions of trajectories can give the 
impression that they are somehow tapping natural or 
inevitable orders of learning. It became clear in our 
discussions that this impression would be mistaken. 
There may be some truth to the idea that in the very 
early years, children’s attention to number and 
quantity may develop in fairly universal ways (though 
it still will depend heavily on common experiences 
and vary in response to cultural variations in experi-
ence), but the influence of variations in experience, in 
the affordances of culture, and, particularly, in instruc-
tional environments, grows rapidly with age. While 
this influence makes clear that there are no single or 
universal trajectories of mathematics learning, 
trajectories are useful as modal descriptions of the 
development of student thinking over shorter ranges 
of specific mathematical topics and instruction, and 
within particular cultural and curricular contexts—
useful as a basis for informing teachers about the 
(sometimes wide) range of student understanding 
they are likely to encounter, and the kinds of peda-
gogical responses that are likely to help students 
move along.

executive summary

By focusing on the identification of 
significant and recognizable clusters 
of concepts and connections in 
students’ thinking that represent key 
steps forward, trajectories offer a 
stronger basis for describing the 
interim goals that students should 
meet if they are to reach the common 
core college and career ready high 
school standards.  In addition, they 
provide understandable points of 
reference for designing assessments 
for both summative and formative 
uses that can report where students 
are in terms of those steps, rather 
than reporting only in terms of 
where students stand in comparison 
with their peers.
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Most of the current work on trajectories, as described 
in this report, has this shorter term topical character. 
That is, they focus on a particular mathematical con- 
tent area—such as number sense or measurement—
and how learning in these areas develops over a few 
grades. These identified trajectories typically are 
treated somewhat in isolation from the influence of 
what everyone recognizes are parallel and ongoing 
trajectories for other mathematical content and 
practices that surely interact with any particular 
trajectory of immediate concern. The hope is that 
these delimited trajectories will prove to be useful to 
teachers in their day-to-day work, and that the 
interactions with parallel trajectories will prove to be 
productive, if arranged well in the curriculum. From 
the perspective of policy and the system, it should 
eventually be possible to string together the growing 
number of specific trajectories where careful empirical 
work is being done, and couple them with curriculum 
designs based on the best combinations of disciplin-
ary knowledge, practical experience, and ongoing 
attention to students’ thinking that we can currently 
muster, to produce descriptions of the key steps in 
students’ thinking to be expected across all of the 
school mathematics curriculum. These in turn  
can then be used to improve current standards and 
assessments and develop better ones over time as  
our empirical knowledge also improves.

The CCII Panel has discussed these issues, and the 
potential of learning trajectories in mathematics, the 
work that has been done on them, the gaps that exist 
in this work, and some of the challenges facing 
developers and potential users. We have concluded 
that learning trajectories hold great promise as tools 
for improving instruction in mathematics, and they 
hold promise for guiding the development of better 
curriculum and assessments as well. We are agreed 
that it is important to advance the development of 
learning trajectories to provide new tools for teachers 
who are under increasing pressure to bring every  
child to high levels of proficiency. 

With this goal in mind, we offer the following 
recommendations:

•	 Mathematics educators and funding agencies  
should recognize research on learning trajecto-
ries in mathematics as a respected and impor-
tant field of work. 

•	 Funding agencies and foundations should 
initiate new research and development projects 
to fill critical knowledge gaps. There are major 
gaps in our understanding of learning trajectories in 
mathematics. These include topics such as:
»» Algebra 
»» Geometry
»» Measurement 
»» Ratio, proportion and rate 
»» Development of mathematical reasoning

	� An immediate national initiative is needed to 
support work in these and other critical areas in 
order to fill in the gaps in our understanding.

•	 Work should be undertaken to consolidate 
learning trajectories. For topics such as counting, 
or multiplicative thinking, for example, different 
researchers in mathematics education have 
developed their own learning trajectories and 
these should be tested and integrated. 

•	 Mathematics educators should initiate work on 
integrating and connecting across trajectories. 

•	 Studies should be undertaken of the develop-
ment of students from different cultural 
backgrounds and with differing initial skill 
levels.

•	 The available learning trajectories should be 
shared broadly within the mathematics educa-
tion and broader R & D communities.

•	  The available learning trajectories should be 
translated into usable tools for teachers.

•	 Funding agencies should provide additional 
support for research groups to validate the 
learning trajectories they have developed so they 
can test them in classroom settings and demon-
strate their utility. 

•	 Investments should be made in the development 
of assessment tools based on learning trajecto-
ries for use by teachers and schools. 

•	 There should be more collaboration among 
mathematics education researchers, assessment 
experts, cognitive scientists, curriculum and 
assessment developers, and classroom teachers.

•	 And, finally as we undertake this work, it is 
important to remember that it is the knowledge 
of the mathematics education research that will 
empower teachers, not just the data from the 
results of assessments.

executive summary
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It is a staple of reports on American students’ 
mathematics learning to run through a litany of 
comparisons with the performance of their peers 
from around the world, or to the standards of 
proficiency set for our own national or state assess-
ments, and to conclude that we are doing at best a 
mediocre job of teaching mathematics. Our average 
performance falls in the mid range among nations; 
the proportion of high performers is lower than it is 
in many countries that are our strongest economic 
competitors; and we have wide gaps in performance 
among variously advantaged and disadvantaged 
groups, while the proportion of the latter groups in 
our population is growing.

All of this is true. But it also is true that long term 
NAEP mathematics results from 1978 to 2008 
provide no evidence that American students’ perfor-
mance is getting worse, and the increasing numbers 
of students who take higher level mathematics 
courses in high school (Advanced Placement, 
International Baccalaureate, and so on) imply that the 
number of students with knowledge of more ad-
vanced mathematical content should be increasing 
(The College Board, n.d.; Rampey, Dion, & Donahue, 
2009). With a large population, the absolute number 
of our high performers is probably still competitive 
with most of our rivals, but declines in the number of 
students entering mathematics and engineering 
programs require us to recruit abroad to meet the 
demand for science, mathematics, engineering, and 
technology graduates. Nevertheless, what has changed 
is that our rivals are succeeding with growing 
proportions of their populations, and we are now 
much more acutely aware of how the uneven quality 
of K-12 education and unevenly distributed opportu-
nities among groups in our society betray our values 
and handicap us in economic competition. So our 
problems are real. We should simply stipulate that.

The prevalent approach to instruction in our schools 
will have to change in fairly fundamental ways, if we 
want “all” or much higher proportions of our students 
to meet or exceed standards of mathematical under-
standing and skill that would give them a good 
chance of succeeding in further education and in the 
economy and polity of the 21st century. The Common 
Core State Standards (CCSS) in mathematics 
provide us with standards that are higher, clearer, and 
more focused than those now set so varyingly by our 
states under No Child Left Behind (NCLB); if they 

are adopted and implemented by the states they will 
undoubtedly provide better guidance to education 
leaders, teachers, and students about where they 
should be heading. But such standards for content 
and performance are not in themselves sufficient to 
ensure that actions will be taken to help most 
students reach them. For that to happen, teachers are 
going to have to find ways to attend more closely and 
regularly to each of their students during instruction 
to determine where they are in their progress toward 
meeting the standards, and the kinds of problems 
they might be having along the way. Then teachers 
must use that information to decide what to do to 
help each student continue to progress, to provide 
students with feedback, and help them overcome 
their particular problems to get back on a path toward 
success. In other words, instruction will not only have 
to attend to students’ particular needs but must also 
adapt to them to try to get—or keep—them on track 
to success, rather than simply selecting for success 
those who are easy to teach, and leaving the rest 
behind to find and settle into their particular niches 
on the normal grading “curve.”  This is what is known 
as adaptive instruction and it is what practice must 
look like in a standards-based system. 

There are no panaceas, no canned programs, no 
technology that can replace careful attention and 
timely interventions by a well-trained teacher who 
understands how children learn mathematics, and 
also where they struggle and what to do about it. 

But note that, to adapt, a teacher must know how to 
get students to reveal where they are in terms of  
what they understand and what their problems might 
be. They have to have specific ideas of how students 
are likely to progress, including what prerequisite 
knowledge and skill they should have mastered,  
and how they might be expected to go off track or 
have problems. And they would need to have, or 
develop, ideas about what to do to respond helpfully 
to the particular evidence of progress and problems 
they observe.

This report addresses the question of where these 
ideas and practices that teachers need might come 
from, and what forms they should take, if they are  
to support instruction in useful and effective ways. 

Ideally, teachers would learn in their pre-service 
courses and clinical experiences most of what they 
need to know about how students learn mathematics. 

i. inTroduction
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It would help if those courses and experiences 
anticipated the textbooks, curriculum materials, and 
instructional units the teachers would likely be using 
in the schools where they will be teaching, so that 
explicit connections could be made between what 
they were learning about students’ cognitive develop-
ment and mathematics learning and the students they 
will be teaching and the instructional materials they 
will be using. This is how it is done in Singapore, 
Finland, and other high-performing countries. In 
America this is unlikely to happen, because of the 
fragmented governance and institutional structure, 
the norms of autonomy and academic freedom in 
teacher training institutions, and the “local control” 
bias in the American system. Few assumptions can  
be made ahead of time about the curriculum and 
materials teachers will be expected to use in the 
districts or schools where they will end up teaching, 
and if valid assumptions can be made, faculty may 
resist preparing teachers for a particular curriculum. 
Perhaps for these reasons, more attention is some-
times given in teacher training institutions to 
particular pedagogical styles or approaches than to 
the content and sequencing of what is to be taught. 
In addition, perhaps because of the emphasis on 
delivery of content without a concomitant focus  
on what to do if the content is not learned, little 
attention has been given to gathering empirical 
evidence, or collecting and warranting teacher lore, 
that could provide pre-service teachers with trustwor-
thy suggestions about how they might tell how a 
student was progressing or what specific things might 
be going wrong; and, even less attention has been 
given to what teachers might do about those things  
if they spot them. 

Given all this, novice teachers usually are left alone 
behind their closed classroom doors essentially to 
make up the details of their own curriculum— 
extrapolating from whatever the district-or school-
adopted textbook or mathematics program might 
offer—and they are told that this opportunity for 
“creativity” reflects the essence of their responsibility 
as “professionals.” 1

But this is a distorted view of what being professional 
means. To be sure, professionals value (and vary in) 
creativity, but what they do—as doctors, lawyers, and, 

we should hope, teachers—is supposed to be rooted 
in a codified body of knowledge that provides them 
with pretty clear basic ideas of what to do in response 
to the typical situations that present themselves  
in their day to day practice. Also, what they do is 
supposed to be responsive to the particular needs  
of their clients. Our hypothesis is that in American 
education the modal practice of delivering the 
content and expecting the students to succeed or fail 
according to their talent or background and family 
support, without taking responsibility to track 
progress and intervene when students are known to 
be falling behind has undermined the development  
of a body of truly professional knowledge that could 
support more adaptive responses to students’ needs. 
This problem has been aggravated by the fact that 
American education researchers tend to focus on  
the problems that interest them, not necessarily  
those that bother teachers, and have not focused on 
developing knowledge that could inform adaptive 
instructional practice. 

Pieces of the necessary knowledge are nevertheless 
available, and the standards-based reform movement 
of the last few decades is shifting the norms of 
teaching away from just delivering the content and 
towards taking more responsibility for helping all  
students at least to achieve adequate levels of 
performance in core subjects. The state content 
standards, as they have been tied to grade levels, can 
be seen as a first approximation of the order in which 
students should learn the required content and skills. 
However, the current state standards are more 
prescriptive than they are descriptive. They define the 
order in which, and the time or grade by which, 
students should learn specific content and skills as 
evidenced by satisfactory performance levels. But 
typically state standards have not been deeply rooted 
in empirical studies of the ways children’s thinking 
and understanding of mathematics actually develop in 
interaction with instruction.2 Rather they usually 
have been compromises derived from the disciplinary 
logic of mathematics itself, experience with the ways 
mathematics has usually been taught, as reflected in 
textbooks and teachers’ practical wisdom, and 
lobbying and special pleading on behalf of influential 
individuals and groups arguing for inclusion of 
particular topics, or particular ideas about “reform”  

i. introduction

1	 The recent emphasis on strict curricular “pacing” in many districts that are feeling “adequate annual progress” pressures from NCLB might 
seem to be an exception, because they do involve tighter control on teachers’ choices of the content to be taught, but that content still varies 
district by district, and teachers still are usually left to choose how they will teach the content.  In addition, whole-class pacing does limit 
teachers’ options for responding to individual students’ levels of progress.

2	 This is also changing, and a number of states have recently used research on learning progressions in science and learning trajectories in 
mathematics to revise their standards. 
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3	 We favor the view that students are active participants in their learning, bringing to it their own theories or cognitive structures (sometimes 
called “schemes” or “schemata” in the cognitive science literature) on what they are learning and how it works, and assimilating new experience 
into those theories if they can, or modifying them to accommodate experiences that do not fit.  Their theories also may evolve and generalize 
based on their recognition of and reflection on similarities and connections in their experiences, but just how these learning processes work is an 
issue that requires further research (Simon et al., 2010).  We would not, however, carry this view so far as to say that students cannot be told 
things by teachers or learn things from books that will modify their learning (or their theories)—that they have to discover everything for 
themselves.  A central function of telling and showing in instruction is presumably to help to direct attention to aspects of experience that 
students’ theories can assimilate or accommodate to in constructive ways.  

or “the basics.”  Absent a strong grounding in re- 
search on student learning, and the efficacy of 
associated instructional responses, state standards 
tend at best to be lists of mathematics topics and 
some indication of when they should be taught grade 
by grade without explicit attention being paid to how 
those topics relate to each other and whether they 
offer students opportunities over time to develop  
a coherent understanding of core mathematical 
concepts and the nature of mathematical argument. 
The end result has been a structure of standards and 
loosely associated curricula that has been famously 
described as being “a mile wide and an inch deep” 
(Schmidt et al., 1997).

Of course some of the problems with current 
standards could be remedied by being even more 
mathematical—that is, by considering the structure  
of the discipline and being much clearer about which 
concepts are more central or “bigger,” and about how 
they connect to each other in terms of disciplinary 
priority. A focus on what can be derived from what 
might yield a more coherent ordering of what should 
be taught. And recognizing the logic of that ordering 
might lead teachers to encourage learning of the 
central ideas more thoroughly when they are first 
encountered, so that those ideas don’t spread so 
broadly and ineffectively through large swaths of the 
curriculum. But even with improved logical coher-
ence, it is not necessarily the case that all or even 
most students will perceive and appreciate that 
coherence. So, there still is the issue of whether the 
standards should also reflect what is known about the 
ways in which students actually develop understand-
ing or construe what they are supposedly being 
taught, and whether, if they did, such standards might 
come closer to providing the kind of knowledge  
and support we have suggested teachers will need if 
they are to be able to respond effectively to their 
students’ needs.

Instruction, as Cohen, Raudenbush, and Ball (2003) 
have pointed out, can be described as a triangular 
relationship involving interactions among a teacher or 
teaching; a learner; and the content, skills, or material 
that instruction is focused on. Our point is that the 
current standards tend to focus primarily on the 

content side of the triangle. They would be more 
useful if they also took into account the ways in 
which students are likely to learn them and how that 
should influence teaching. Instruction is clearly a 
socially structured communicative interaction in 
which the purpose of one communicator, the teacher, 
obviously, is to tell, show, arrange experiences, and 
give feedback so that the students learn new things 
that are consistent with the goals of instruction.3  
As with all human beings, students are always 
learning in that they are trying to make sense of 
experience in ways that serve their purposes and 
interests. Their learning  grows or progresses, at least  
in the sense of accretion—adding new connections, 
perceptions, and expectations—but whether it 
progresses in the direction of the goals of instruction 
as represented by standards, and at the pace the 
standards imply, is uncertain, and that is the fun-
damental problem of instruction in a standards- 
based world. 

So, what might be done to help teachers coordinate 
their efforts more effectively with students’ learning?  
What is needed to ensure that the CCSS move us 
toward the aspirations of the standards movement,  
an education system capable of achieving both 
excellence and equity?

Over the past 20 years or so the process of “formative 
assessment” has attracted attention as a promising 
way to connect teaching more closely and adaptively 
to students’ thinking (Sadler, 1989; Black & Wiliam, 
1998). Formative assessment involves a teacher in 
seeking evidence during instruction (evidence from 
student work, from classroom questions and dialog  
or one-on-one interviews, sometimes from using 
assessment tools designed specifically for the purpose, 
and so on) of whether students are understanding and 
progressing toward the goals of instruction, or 
whether they are having difficulties or falling off track 
in some way, and using that information to shape 
pedagogical responses designed to provide students 
with the feedback and experiences they may need to 
keep or get on track. This is not a new idea; it is what 
coaches in music, drama, and sports have always done. 
Studies of the use of formative assessment practices 
(Black & Wiliam, 1998; National Mathematics 

i. introduction
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Advisory Panel, 2008) indicate that they can have 
quite promising effects on improving students’ 
outcomes, but they also suggest that in order to work 
well they require that teachers have in mind theories 
or expectations about how students’ thinking will 
change and develop, what problems they are likely to 
face, and what kinds of responses from the teacher are 
likely to help them progress. This in turn has led some 
to turn their attention to developing empirically 
testable and verifiable theories to increase our 
understanding, in detail, about the ways that students 
are most likely to progress in their learning of 
particular subjects that could provide the understand-
ing teachers need to be able to interpret student 
performance and adapt their teaching in response.

This brings us to the idea of “learning progressions,” 
or, as the concept more often is termed in the 
mathematics education literature—“learning trajecto-
ries.”  These are labels given to attempts to gather and 
characterize evidence about the paths children seem 
to follow as they learn mathematics. Hypotheses 
about the paths described by learning trajectories 
have roots in developmental and cognitive psychology 
and, more recently, developmental neuroscience.  
These include roots in, for instance, Piaget’s genetic 
epistemology which tried to describe the ways 
children’s actions, thinking, and logic move through 
characteristic stages in their understanding of the 
world (Piaget, 1970) and Vygotsky’s description  
of the “Zone of Proximal Educational Development” 
that characterized the ways in which children’s 
learning can be socially supported or “scaffolded”  
at its leading edge and addressed the extent to  
which individual learners may follow such supports 
and reach beyond their present level of thinking  
(Vygotsky, 1978).4 These attempts to describe how 
children learn mathematics also are influenced by more 
conventional “scope and sequence” approaches to 
curriculum design, but in contrast to those approach-
es, they focus on seeking evidence that students’ 
understanding and skill actually do develop in the 
ways they are hypothesized to, and on revising those 
hypotheses if they don’t.

4	 Infant studies suggest that very young children have an essentially inborn capacity to attend to quantitative differences and equivalences, and 
perhaps to discriminate among very small numbers (Xu, Spelke, & Goddard, 2005; Sophian, 2007), capacities that provide a grounding for 
future mathematics learning. Detailed clinical interviews and studies that describe characteristic ways in which children’s understanding of 
number and ability to count and do simple arithmetic develop (Gelman & Gallistel, 1986; Ginsburg, 1983; Moss & Case, 1999). Hypotheses 
about trajectories also stem from the growing tradition of design experiments exploring the learning of other strands of mathematics (Clements, 
Swaminathan, Hannibal, & Sarama, 1999).

5	 It might have been clearer if Simon had used the term “hypothetical teaching or pedagogical trajectory,” or perhaps, because of the need to 
anticipate the way the choices and sequence of teaching activities might interact with the development of students’ thinking or understanding, 
they should have been called “teaching and learning trajectories,” or even “instructional trajectories” (assuming “instruction” is understood to 
encompass both teaching and learning). There is a slight ambiguity in any case in talking about learning as having a trajectory.  If learning is 
understood as being a process, with its own mechanisms, it isn’t learning per se that develops and has a trajectory so much as the products of 
learning (thinking, or rather concepts, of increasing complexity or sophistication, skills, and so on) that do. But that is a minor quibble, reflecting 
the varying connotations of “learning” (we won’t try to address ideas about “learning to learn” here). 

The first use of the term “learning trajectory” as 
applied to mathematics learning and teaching seems 
to have been by Martin Simon in his 1995 paper 
(Reconstructing Mathematics Pedagogy from a  
Constructivist Perspective) reporting his own work  
as a researcher/teacher with a class of prospective 
teachers. The paper is a quite subtle treatment of the 
issues we have tried to describe above, in that his 
concern is with how a teacher teaches if he does not 
expect simply to tell students how to think about a 
mathematical concept, but rather accepts responsibil-
ity for trying to check on whether they are in fact 
understanding it, and for arranging new experiences 
or problems designed to help them move toward 
understanding, if they are not. This engages him 
directly in the relationships among his goals for the 
students, what he thinks they already understand, his 
ideas about the kinds of tasks and problems that 
might bring them to attend to and comprehend the 
new concept, and an ongoing process of adjustment 
or revision and supplementation of these expectations 
and tasks as he tries them with his students and 
observes their responses. Simon used the term 
“hypothetical learning trajectory” to refer to the fram-
ing of a teacher’s lesson plan based on his reasoned 
anticipation of how students’ learning might be 
expected to develop towards the goal(s) of the lesson, 
based on his own understanding of the mathematics 
entailed in the goal(s), his knowledge of how other 
students have come to understand that mathematics, 
his estimates of his students’ current (range of ) 
understanding, and his choice of a mathematical task 
or sequence of tasks that, as students work on them, 
should lead them to a grounded understanding of the 
desired concept(s) or skill(s). In summary, for Simon 
a hypothetical learning trajectory for a lesson “is 
made up of three components: the learning goal that 
defines the direction, the learning activities, and the 
hypothetical learning processes—a prediction of how 
the students’ thinking and understanding will evolve 
in the context of the learning activities” (Simon, 1995, 
p. 136). The hypothetical trajectory asserts the 
interdependence of the activities and the learning 
processes.5

i. introduction
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While Simon’s trajectories were hypotheses about the 
sequences of activities and tasks that might support 
the development of students’ understanding of a  
specific instructional goal, many of the researchers 
and developers who have since adopted this language 
to describe aspects of their work have clearly wanted 
to apply the idea of trajectories to greater ranges  
of the mathematics curriculum, and to goals and 
sub-goals of varying grain size. In addition, as we 
have implied leading in to this discussion, there are 
many who have hopes that well-constructed and 
validated trajectories might provide better descrip-
tions of how students’ mathematical understanding 
and skill should develop over time. Such trajectories 
could be used as a basis for designing more coherent 
and instructionally useful standards, curricula, 
assessments, and approaches to teacher professional 
development. 

It might help to look at an example. Clements and 
Sarama (2004) offer a rather carefully balanced view:

we conceptualize learning trajectories as 
descriptions of children’s thinking and 
learning in a specific mathematical 
domain, and a related conjectured route 
through a set of instructional tasks 
designed to engender those mental 
processes or actions hypothesized to move 
children through a developmental 
progression of levels of thinking, created 
with the intent of supporting children’s 
achievement of specific goals in that 
mathematical domain. (p.83)

Brief characterizations like this inevitably require 
further specification and illustration before they 
communicate fully, as Clements and Sarama well 
know. Their definition highlights the concern with 
the “specific goals” of teaching in the domain but 
stresses that the problem of teaching is that it has  
to take into account children’s current thinking,  
and how it is that they learn, in order to design tasks 
or experiences that will engage those processes of 
learning in ways that will support them in proceeding 
toward the goals the teachers set for them. Taking 
into account children’s current thinking includes 
identifying where their thinking stands in terms of  
a developmental progression of levels and kinds of 
thinking. Introducing the word “developmental” 

6	 “Trajectory” as a metaphor has a ballistic connotation—something that has a target, or at least a track, and an anticipated point of impact.  
“Progression” is more agnostic about the end point—it just implies movement in a direction, and seems to fit a focus on something unfolding in 
the mind of the student, wherever it may end up, and thus it might be better reserved for use with respect to the more maturational, internal, and 
intuitive side of the equation of cognitive/thinking development. But it may well be too late to try to sort out such questions of nomenclature. 

doesn’t at all imply that students’ thinking could 
progress independently of experience, but it does 
suggest that teaching needs to take into account 
issues of timing and readiness (“maturation” is a word 
that once would have been used). Progress is not only 
or simply responsive to experience but will unfold 
over time in an ordered way based on internal factors, 
though this is likely to be contingent on the student’s 
having appropriate experiences. The specific timing for 
particular students may vary for both internal and 
external reasons. 

Clements and Sarama accept that one can legiti-
mately focus solely on studying the development of 
students’ thinking or on how to order instructional 
sequences, and that either focus can be useful, but  
for them it is clear that the two are inextricably 
related, at least in the context of schooling. They 
really should be studied, and understood, together.

At this point we can only question whether the right 
label for the focus of that joint study is “learning 
trajectories,” or whether it should be something more 
compound and complex to encompass both learning 
and teaching, and whether there should be some 
separate label for the aspects of development that are 
significantly influenced by “internal” factors.6 Others 
seem to have recognized this point. The recent 
National Research Council (NRC) report on early 
learning in mathematics (Cross, Woods, & Schwein-
gruber, 2009) uses the term, “teaching-learning paths” 
for a related concept; and the Freudenthal program in 
Realistic Mathematics Education, which has had a 
fundamental impact on mathematics instruction and 
policy in the Netherlands, uses the term “learning-
teaching trajectories,” (Van den Heuvel-Panguizen, 
2008) so the nomenclature catches up with the 
complexity of the concept in some places.

Organization of the Report. This report grew out of the 
efforts of a working group originally convened by the 
Center on Continuous Instructional Improvement 
(CCII) to review the current status of thinking about 
and development of the concept of learning progres-
sions or trajectories in mathematics education. Our 
initial intention was to try to identify or develop a 
few strong examples of trajectories in key domains of 
learning in school mathematics, and to document the 
issues that we faced in doing that, particularly in 
terms of the kinds of warrant we could assert for the 

i. introduction
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examples we chose. We intended to use these 
examples as a basis for discussion with a wider group 
of experts, practitioners, and policymakers about 
whether this idea has promise, and, if so, what else 
would be required to realize that promise. 

As our work proceeded, it ran into, or perhaps fell 
into step with, the activities surrounding the initiative 
of the Council of Chief State School Officers 
(CCSSO), and the National Governors Association 
(NGA) to recruit most of the states, territories, and 
the District of Columbia to agree to develop and 
seriously consider adopting new national “Common 
Core College and Career Ready” secondary school 
leaving standards in mathematics and English 
language arts. This process then moved on to the 
work of mapping those standards back to what 
students should master at each of the grades K 
through 12 if they were to be on track to meeting 
those standards at the end of secondary school.  
The chair of our working group, Phil Daro, was 
recruited to play a lead role in the writing of the new 
CCSS, and subsequently in writing the related K-12 
year-by-year standards. He reflects on that experience  
in Section V of this report. 

It was clear that the concept of “mapping back” to  
the K-12 grades from the college and career-ready 
secondary standards implied some kind of progres-
sion or growth of knowledge and understanding  
over time, and that therefore, the work on learning 
trajectories ought to have something useful to say 
about the nature of those maps and what the impor-
tant waypoints on them might be. Clearly there was a 
difference between the approach taken to developing 
learning trajectories, which begins with defining a 
starting point based on children’s entering under-
standings and skills, and then working forward, as 
opposed to logically working backwards from a set  
of desired outcomes to define pathways or bench-
marks. The latter approach poses a serious problem 
since we want to apply the new standards to all 
students. It is certainly possible to map backwards  
in a logical manner, but this may result in defining  
a pathway that is much too steep for many children 
given their entering skills, or that requires more 
instructional time and support than the schools are 
able to provide. It is also possible to work iteratively 
back and forth between the desired graduation target 
and children’s varied entry points, and to try to build 
carefully scaffolded pathways that will help most 
children reach the desired target, but this probably 
would require multiple pathways and special attention 
to children who enter the system with lower levels  
of mathematical understanding.

Given these differences in perspective, Daro thought 
it would be helpful for some of the key people leading 
and making decisions about how to draft the CCSS 
for K-12 mathematics to meet with researchers who 
have been active in developing learning trajectories 
that cover significant elements of the school math-
ematics curriculum to discuss the implications of the 
latter work for the standards writing effort. Professors 
Jere Confrey and Alan Maloney at North Carolina 
State University (NCSU), who had recently joined 
our working group, suggested that their National 
Science Foundation-supported project on a learning 
trajectory for rational number reasoning and NCSU’s 
Friday Institute had resources they could use to host 
and, with CPRE/CCII, co-sponsor a workshop that 
would include scholars working on trajectories along 
with representatives of the core standards effort.  
A two-day meeting was duly organized and carried  
out at the William and Ida Friday Institute for 
Educational Innovation, College of Education, at 
NCSU in August 2009.

That meeting was a success in that the participants 
who had responsibility for the development of the 
CCSS came away with deeper understanding of the 
research on trajectories or progressions and a convic-
tion that they had great promise as a way of helping 
to inform the structure of the standards they were 
charged with producing. The downside of that success 
was that many of the researchers who participated in 
the meeting then became directly involved in working 
on drafts of the proposed standards which took time 
and attention away from the efforts of the CCII 
working group. 

Nevertheless, we found the time needed for further 
deliberation, and writing, sufficient to enable us to 
put together this overview of the current understand-
ing of trajectories and of the level of warrant for  
their use. The next section builds on work published 
elsewhere by Douglas Clements and Julie Sarama to 
offer a working definition of the concept of learning 
trajectories in mathematics and to reflect on the  
intellectual status of the concept and its usefulness  
for policy and practice. Section III, based in part on 
suggestions made by Jere Confrey and Alan Maloney 
and on the discussions within the working group, 
elaborates the implications of trajectories and 
progressions for the design of potentially more  
effective assessments and assessment practices. It  
is followed by a section (Section IV) written by 
Marge Petit that offers insights from her work on  
the Vermont Mathematics Partnership Ongoing 
Assessment Project (OGAP) about how teachers’ 
understanding of learning trajectories can inform 

i. introduction



21

LEARNING  TRAJECTORIES IN MATHEMATICS:  A Foundation for Standards, Curriculum, Assessment, and Instruction

their practices of formative assessment and adaptive 
instruction. Section V, written by Phil Daro, is based 
on his key role in the development of the CCSS for 
mathematics, and reflects on the ways concepts of 
trajectories and progressions influenced that process 
and draws some implications for ways of approaching 
standards in general. Section VI, offers a set of 
recommended next steps for research and develop-
ment, and for policy, based on the implications of the 
working group’s discussions and writing. This report  
is supplemented by two appendices. First, Appendix 
A, developed by Wakasa Nagakura and Vinci Daro, 
provides summary descriptions of a number of efforts 
to describe learning trajectories in key domains of 
mathematics learning. Vinci Daro has written an 
analytic introduction to the appendix describing some 
of the important similarities and differences in the 
approaches taken to developing and describing tra- 
jectories. Her introduction has benefitted significantly 
from the perspectives offered by Jeffrey Barrett and 
Michael Battista7, who drafted a joint paper based  
on comparing their differing approaches to describing 
the development of children’s understanding of 
measurement, and their generalization from that 
comparison to a model of the ways in which approaches 
to trajectories might differ, while also showing some 
similarities and encompassing similar phenomena. 
Finally, to supplement the OGAP discussion in 
Section IV, Appendix B provides a Multiplicative 
Framework developed by the Vermont Mathematics 
Partnership Ongoing Assessment Project (OGAP)  
as a tool to analyze student work, to guide teacher 
instruction, and to engage students in self-assessment. 

We hope readers will find this report a useful 
introduction to current work and thinking about 
learning trajectories for mathematics education. In 
this introduction to the report we have tried to show 
readers why we care, and they should care, about 
these questions, and we have tried to offer a perspec-
tive on how to think about what is being attempted 
that might cast some light on the varying, and 
sometimes confusing, ways in which the terms 
trajectory, progression, learning, teaching, and so on, 
are being used by us and our colleagues in this work. 

i. introduction

7	 We would like to acknowledge the input of Jeffrey Barrett and Michael Battista to this report; elaborations of their contributions will be 
available in 2011 in a volume edited by Confrey, Maloney, and Nguyen (forthcoming).
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In the Introduction we referred to our colleagues’, 
Julie Sarama and Douglas Clements’, definition of 
mathematics learning trajectories and tried to parse  
it briefly. They define trajectories as: 

descriptions of children’s thinking and 
learning in a specific mathematical 
domain, and a related conjectured route 
through a set of instructional tasks 
designed to engender those mental 
processes or actions hypothesized to  
move children through a developmental 
progression of levels of thinking, created 
with the intent of supporting children’s 
achievement of specific goals in that 
mathematical domain. (Clements & 
Sarama, 2004, p. 83)

In this section we will continue our parsing in  
more detail, using their definition as a frame for 
exam-ining the concept of a trajectory and to 
consider the intellectual status and the usefulness  
of the idea.  In this we rely heavily on the much  
more detailed discussions provided by Clements  
and Sarama in their two recent books on learning 
trajectories in early mathematics learning and 
teaching, one written for researchers and one for 
teachers and other educators (Clements & Sarama, 
2009; Sarama & Clements, 2009a), and a long  
article drawn from those volumes, written as back-
ground for this report and scheduled to appear in  
a volume edited by Confrey, Maloney, and Nguyen  
(in press, 2011). We will not try here to repeat their 
closely reasoned and well documented arguments, 
available in those references, but rather we will try  
to summarize and reflect on them, consider their 
implications for current policy and practice, and 
suggest some limitations on the practical applicabil-
ity of the concept of a trajectory, limitations that  
may be overcome with further research, design, and 
development.

All conceptions of trajectories or progressions have 
roots in the unsurprising observation that the amount 

and complexity of students’ knowledge and skill in 
any domain starts out small and, with effective 
instruction, becomes much larger over time, and that 
the amount of growth clearly varies with experience 
and instruction but also seems to reflect factors 
associated with maturation, as well as significant 
individual differences in abilities, dispositions, and 
interests. Trajectories or progressions are ways of 
characterizing what happens in between any given set 
of beginning and endpoints and, in an educational 
context, describe what seems to be involved in 
helping students get to particular desired endpoints. 
Clements and Sarama build their definition from 
Marty Simon’s original coinage, in which he said that 
a “hypothetical learning trajectory” contains “the 
learning goal, the learning activities, and the thinking 
and learning in which the students might engage” 
(1995, p. 133). Their amplification makes it more 
explicit that trajectories that are relevant to schools 
and instruction are concerned with specifying instruc-
tional targets—goals or standards—that should be 
framed both in terms of the way knowledge and skill 
are defined by the school subject or discipline, in  
this case mathematics, and in terms of the way the 
students actually apply the knowledge and skills. 

In their formulation there actually are two or more 
closely related and interacting trajectories or ordered 
paths aimed at reaching the goal(s):

•	 Teachers use an ordered set of instructional 
experiences and tasks that are hypothesized to 
“engender the mental processes or actions” that 
develop or progress in the desired direction (or 
they use curricula and instructional materials that 
have been designed based on the same kinds of 
hypotheses, and on evidence supporting those 
hypotheses); and

•	 Students’ “thinking and learning… in a specific 
mathematical domain” go through a “developmen-
tal progression of levels” which should lead to  
the desired goal if the choices of instructional 
experiences are successful.

ii. What are Learning Trajectories? And What are they Good for?8

8	 Based on a paper prepared by Douglas Clements and Julie Sarama. The paper is based in part upon work supported by the Institute of 
Education Sciences, U.S. Department of Education, through Grant No. R305K05157 to the University at Buffalo, State University of New York, 
D. H. Clements, J. Sarama, and J. Lee, “Scaling Up TRIAD: Teaching Early Mathematics for Understanding with Trajectories and Technologies” 
and by the National Science Foundation Research Grants ESI-9730804, “Building Blocks--Foundations for Mathematical Thinking, Pre-Kinder-
garten to Grade 2:  Research-based Materials Development.” Any opinions, findings, and conclusions or recommendations expressed in this 
publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. 
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The goals, and the trajectory of ordered instructional 
experiences, reflect the hopes of the school, and the 
society that supports the school, but if the students 
are actually to learn what is hoped, attention will have 
to be paid to whether in practice there is the expected 
correspondence between the trajectory of instructional 
experiences and the trajectory of students’ thinking. 
The “conjectured” or hypothesized order of experiences 
that should engender progressive growth in the levels 
of students’ thinking will need to be checked against 
actual evidence of progress, presumably to be revised 
and retried if the hypotheses prove false or faulty. 
While the two trajectories—of thinking and learning 
on the one hand, and teaching on the other—are 
analytically distinguishable, Clements and Sarama 
argue that they are inextricably connected and best 
understood as being so.  Still, their stress on the active 
or constructive nature of students’ learning does 
suggest that their learning may not just reflect the 
order of development that the tasks and experiences 
are expected to engender, but that learning may 
develop in ways that can sometimes be surprising  
and even new.

Clements and Sarama fit the concept of learning 
trajectories within a larger theoretical framework they 
call “Hierarchic Interactionalism” (HI). HI is a 
synthesis of contemporary approaches to understand-
ing how human beings learn and develop.   It holds 
that cognitive development, both general and domain 
specific, proceeds through a hierarchical sequence of 
levels of concepts and understanding, in which those 
levels grow within domains and in interaction with 
each other across domains, and their growth also 
reflects interaction between innate competencies and 
dispositions and internal resources, on the one hand, 
and experience, including the affordances of culture as 
well as deliberate instruction, on the other. Clements 
and Sarama say that “mathematical ideas are repre-
sented intuitively, then with language, then metacog-
nitively, with the last indicating that the child pos- 
sesses an understanding of the topic and can access 
and operate on those understandings to do useful  
and appropriate mathematical work.” (Clements & 
Sarama, 2007b, p. 464)

HI would suggest, with respect to mathematics, at 
least, that the developmental levels  described in 
trajectories are probably best understood and observed 
within specific mathematical domains or topics, 

9	 Clements and Sarama refer to the components of these structures as being “mental actions on objects” to indicate that the mental work is on 
or with the concepts, representations, and manipulations within specific mathematical domains.

ii. what are learning trajectories? and what are they good for?

though they also are influenced by more general, 
cross-domain development. The levels are seen as 
being qualitatively distinct cognitive structures of 
“increasing sophistication, complexity, abstraction, 
power, and generality.”9 For the most part they are 
thought to develop gradually out of the preceding 
level(s) rather than being sudden reconfigurations, 
and that means that students often can be considered 
to be partially at one level while showing some of the 
characteristics of the next, and “placing” them in 
order to assign challenging, but doable work becomes 
a matter of making probabilistic judgments that they 
are more likely to perform in ways characteristic of a 
particular level than those of levels that come before 
or after it. There is some suggestion that a “critical 
mass” of the elements at a new level have to be 
developed before a student will show a relatively high 
probability of responding in ways characteristic of 
that level, but HI does not suggest that ways of 
thinking or operating characteristics of earlier levels 
are abandoned—rather students may revert to them  
if conditions are stressful or particularly complex,  
or perhaps as they “regroup” before they move to an  
even higher level. Making the case for considering a 
student to be “at” a particular level requires observa-
tion and evidence about the student’s probable 
responses in contexts where the level is relevant. 

HI distinguishes its levels from developmental 
“stages” of the sort described by Piaget and others. 
Stages are thought to characterize cognitive perfor-
mance across many substantive domains, whereas  
HI levels are considered to be domain specific, and 
the movement from one level to another can occur  
in varying time periods, but it generally will happen 
over a much shorter time than movement from one 
stage to the next. The latter can be measured in years. 
HI also adopts the skepticism of many students of 
development about the validity and generality of  
the stage concept.

In HI the levels and their order are considered to 
have a kind of “natural” quality, in that they are 
considered to have their beginnings in universal 
human dispositions to attend to particular aspects of 
experience, and, at least within a particular culture, to 
play out in roughly similar sequences given common 
experiences in that culture. And, while particular 
representations of mathematics knowledge certainly 
aren’t thought to be inborn, HI cites evidence of the 
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importance of “initial bootstraps” for developing 
mathematical understanding: 

•	 Children have important, but often inchoate, 
pre-mathematical and general cognitive  
competencies and predispositions at birth or soon 
thereafter that support and constrain, but do not 
absolutely direct, subsequent development of 
mathematics knowledge. Some of these have  
been called “experience-expectant processes” 
(Greenough, Black, & Wallace,. 1987), in which 
universal experiences lead to an interaction of 
inborn capabilities and environmental inputs that 

guide development in similar ways across cultures 
and individuals. They are not built-in representa-
tions or knowledge, but predispositions and 
pathways to guide the development of knowledge 
(cf. Karmiloff-Smith, 1992). Other general 
cognitive and meta-cognitive competencies make 
children—from birth—active participants in their 
learning and development. (Tyler & McKenzie, 
1990; Clements & Sarama, 2007b, p. 465)

However, HI also recognizes that the pace at which 
individuals’ knowledge and skill develop, and the 
particular sub-paths they follow from level to level—

ii. what are learning trajectories? and what are they good for?

Illustration of a portion of a learning trajectory describing the growth of children’s understanding of linear measurement:
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and certainly whether they reach later levels at all—
can vary considerably with variations in experiences 
and probably according to individual differences as 
well. So, HI doesn’t claim that any particular progres-
sion is inevitable, but rather asserts that some will be 
more likely than others, and that some will be more 
productive than others. In addition, HI makes a 
strong hypothetical claim that, with respect to the 
organization of instruction and the design of hypo-
thetical learning trajectories, sequences of instruc-
tional experiences and tasks that follow and exploit 
the more likely developmental paths will prove to be 
more effective and efficient in helping most students 
move toward desired instructional goals, and do so in 
ways that leave them with deeper and more flexible 
understanding. Clements and Sarama cite some 
modest encouraging evidence that the number of 
short-term learning paths (or alternative solution 
strategies) likely to be seen in typical mathematics 
classes should normally be small enough for teachers 
to handle, and many of the variants will represent 
earlier or later points on the same trajectory (Murata 
& Fuson, 2006). However, they also stress that HI 
would postulate that the influence of more universal 
and internal factors relative to variations in external 
experience and instruction would become less and less 
as students get older and the mathematics becomes 
more advanced, and that the range of variation due  
to differences in experience will certainly increase. 

So, what this boils down to is that close attention to 
developmental progressions and to the ways that 
students’ thinking typically responds to instructional 
experiences should be particularly useful in designing 
teaching and learning trajectories—that is, in figuring 
out what kinds of tasks and experiences would model 
and require the kinds of cognitive action that would 
need to come next if a student were to be supported 
in moving from where his or her thinking now stands 
to levels that would be closer to matching the goals  
of instruction. HI makes clear that a lot of interacting 
and potentially compensating factors are normally  
at work in a student’s response to an instructional 
experience, so instruction at any given time may  
relate to multiple levels of a learning trajectory for 
each student. A well-designed sequence of instruc-
tional tasks will develop robust competencies over  
the trajectory. 

Researchers can use HI to frame an extended 
program of serious and iterative empirical work 
involving close observation of how students think  
as they learn mathematics, and of the particular 
circumstances in which they are learning, including 
what curriculum is being used and what the student’s 
teacher and peers are actually doing, so that well 

ii. what are learning trajectories? and what are they good for?

grounded descriptions of likely teaching and learning 
trajectories, and their range of likely variation, can be 
developed. These descriptions can be used as a basis 
for designing even more effective trajectories and 
(adaptive) instructional regimes for use with other 
comparable populations of students.

See Illustration on page 27.

Clements and Sarama suggest that what distinguishes 
approaches to curriculum design based on learning 
trajectories and developmental progressions from 
other approaches, such as “scope and sequence,” is not 
just that they order instructional experiences over 
time—because most past approaches have recognized 
the need to do that—but rather that the hypoth-
esized order is based not only on the logic of the 
mathematics discipline or traditions of conventional 
practice but also on this close attention to evidence 
on students’ thinking and how it actually develops in 
response to experience and instruction. 

Whether this difference actually is significant or not 
depends on the rigor of the empirical work that 
supports the hypothetical trajectories, and curricula 
and instruction based on them. Elsewhere Clements 
and Sarama (2007c, 2008; Sarama & Clements, 
2009b) have reported their own work on developing 
and testing learning trajectory-based instruction  
and curricula in early mathematics learning. Their 
“Building Blocks” curriculum (2007a) is supported  
by solid evidence, including evidence from random 
controlled trial experiments, that it performs signifi-
cantly better than instruction based on curricula not 
rooted in trajectories—in the areas of early math-
ematics learning in understanding of number, 
operations, geometrical shapes, patterning, and 
measurement, among others. Our Appendix A lists a 
number of other examples of hypothesized trajecto-
ries that can offer some evidence to support the claim 
that they provide a basis for design of more effective 
instruction.  While Clements and Sarama recognize 
that the model of development that would best fit the 
phenomena described by HI would probably require 
a complex web of interrelated progressions and 
contingencies, they argue that their practical work 
convinces them that it is useful to isolate and focus 
on domain- or topic-specific learning trajectories as 
the unit of analysis most relevant to instruction. 
Teachers find it difficult, and not particularly helpful, 
to focus on all of the factors that might be influenc-
ing their students’ progress, but they seem to welcome 
guidance about the steps their students are likely to 
go through in developing their understanding of the 
current topic of instruction (as, for instance, multipli-
cative reasoning—see Section IV on OGAP).
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ii. what are learning trajectories? and what are they good for?

The point of all this is that the proof is in the pudding. 
If it can be established that most students, at least 
within a particular society,  within a wide range of 
ability, and with access to appropriate instruction, 
follow a similar sequence, or even a small finite range 
of sequences, of levels of learning of key concepts and 
skills, then it should be possible not only to devise 
instructional sequences to guide students in the 
desired directions, but it should also be possible to 
develop standards and expectations for students’ 
performance that are referenced to those sequences; 
so that the standards,  and derived assessments, report 
in terms that have educational meaning and relevance. 
The following sections suggest some of these implica-
tions, particularly for assessments and standards, but 
also for adaptive instruction.

NOTE: The layered figure illustrates the levels of developing competence as described by Hierarchic Interactionalism (Sarama & Clements, 
2009a). The vertical axis describes conceptual and practical competence in a content domain. The horizontal axis represents developmental time. 
Several types of thinking develop at once, shown as various layers. Students may access them in varying ways over time. Darker shading indicates 
dominance of a type of thinking at some time. Students do not necessarily exhibit the most competent level of thinking they have achieved, but  
may fall back to simpler levels if practical. The small arrows show initial connections from one type of thinking to another, and the larger arrows 
show established connections, allowing for fall back or regaining a prior type of thinking.

Source. Sarama & Clements, 2009a

Illustration of the theoretical account of  developing competence over time, perhaps as short a timespan as  
2 years, or as long as 10 years:
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In CPRE’s report on Learning Progressions in Science 
(Corcoran, Mosher, & Rogat, 2009), we argued that 
one of the benefits of developing and testing progres-
sions—well warranted hypotheses about the pathways  
students’ learning of the core concepts and practices 
of science disciplines are likely to develop over time, 
given appropriate instruction—would be that the 
levels of learning identified in those progressions 
could serve as reference points for assessments 
designed to report where students are along the way 
to meeting the goals of instruction and perhaps 
something about the problems they might be having 
in moving ahead. Clearly, the related ideas about 
learning and teaching trajectories in mathematics 
hold out the same promise of providing a better 
grounding for designing assessments that can report 
in educationally meaningful terms.

What we are suggesting, however, is easier said  
than done. But we are not alone in suggesting it.  
The National Research Council’s (NRC) 2001 report  
on the foundations of assessment, Knowing what 
Students Know (Pellegrino, Chudowsky, & Glaser, 
2001), describes educational assessment as a triangu-
lar (and cyclical) process that ideally should relate: 

•	 Scientifically grounded conceptions of the nature  
of children’s and students’ thinking, understand-
ing, and skills, and how they develop; to 

•	 The kinds of observations of students’ and 
children’s behavior and performance that might 
reflect where they are in the development of  
their thinking and understanding, and ability to 
use that knowledge; and to 

•	 The kinds of reasoning from, or interpretation  
of, those observations that would support 
inferences about just where children and students 
were in the development of their thinking, 
understanding, and skill. 

The vertices of the NRC report’s assessment triangle 
were named cognition, observation, and interpretation. 

What the NRC panel labeled ‘cognition’ involves a 
contemporary understanding of the ways in which 
sophisticated expertise in any field develops, with 
instruction and practice, out of earlier naïve concep-
tions. And they suggest that such expertise involves 
the development of coherent cognitive structures that 
organize understanding of a field in ways that make 

knowledge useful and go well beyond simple accumu-
lation of facts or skills. In their view, the role of 
assessment should be to support inferences about the 
levels of these structures (they call them “schemas”) 
that students have reached, along with the particular 
content they have learned and particular problems 
they might be having. That view seems to us to be 
completely consistent with our view of the role that 
learning progressions or trajectories should play (and 
at a number of points Knowing what Students Know 
in fact uses the term progressions to describe the 
content of the cognition vertex of their assessment 
triangle). Both their view and ours leave open to 
empirical investigation the question of how such 
progressions, or levels, should be further specified. 

It is in this empirical work that the “easier said than 
done” aspect of these ideas comes into play. Knowing 
what Students Know makes it clear that assessment 
items or occasions to observe students’ behavior 
should be derived from, and designed to reflect, the 
hypothesized cognitive model of students’ learning, 
and then the results obtained when students perform 
the assessment tasks, or when their behavior is 
observed, should be subjected to rational examin-
ation and the application of statistical models to see 
whether the patterns of students’ performance on the 
various tasks and observations look to be consistent 
with what one would expect if the cognitive theory  
is true and the items are related to it in the ways that 
one hoped. Mismatches should not in themselves 
invalidate the assessment or the related theory, but 
they do represent a challenge to move back through 
the chain of reasoning that was supposed to relate  
the assessment results to the underlying theory to  
see where in that chain the reasoning might have 
gone wrong. Knowing what Students Know provides  
a clear presentation of the case for this kind of 
evidence-based assessment design and then goes on 
to describe the considerations that go into the design 
of items and occasions for observation; so that they 
have a good chance of reflecting the ways knowledge 
and behavior are expected to grow based on cognitive 
theories and research; and so that the chances they 
also are reflecting unrelated factors and influences  
are reduced. Then in Chapter 4 (pp.111-172), authors 
Pellegrino, Chudowsky, and Glaser present a very 
useful overview of new approaches to psychometric 
and statistical modeling that can be used to test 
whether an assessment’s items and observations 
behave in a way that would be predicted if the 

iii. Trajectories and Assessment 
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underlying theory of learning were true, and that  
also can frame the ways the results are reported and 
indicate the levels of confidence one should have  
in them.

As we have surveyed the work going on along these 
lines, we have concluded that these approaches are 
still pretty much in their infancy in terms of practical 
use. The bulk of large- and medium-scale assessment 
in this country is rooted in older psychometric 
models, or updated versions of them, which assume 
that the underlying trait that is the target of assess-
ment arrays both students and assessment items along 
a single underlying dimension (such things as 
“mathematical ability,” or “reading comprehension”). 
These models characterize a student’s ability or skill 
with reference to his or her peers—to where they 
stand in the distribution of all students’ performances 
(hence “norm-referenced”)—and stress the ability of 
the assessment and its component items to distin-
guish or “discriminate” among students. The items in 
the assessment are written to be about the content of 
the school subject and to fit into a framework 
defining the elements of the content to be covered, 
but the fundamental characteristics that determine 
whether items get included in the assessment or not 
have as much or more to do with whether they “work” 
to discriminate among students and behave as though 
they are reflecting a single underlying dimension. 
Such assessments and the scales based on them (given 
assumptions about the nature of the underlying 
student performance distributions, the scale scores 
often are claimed to have “equal interval” properties—
presumably useful for comparing such things as 
relative gains or losses for students at different 
locations on the scale) tend not to provide a lot of 
specific information about what students know and 
can do.10 Nevertheless, in current practice the items 
that students who have particular scale scores tend to 
get right compared to students who are below them, 
and tend to fail compared to students who are above 
them, can be examined after the fact to try to infer 
something about what the scores at particular points 
on the scale imply about what students at those levels 
seem to know. It is these after the fact inferences, and 
then judgments based on what those inferences seem 
to describe, that are used to select the scale scores that 

10	 The focus on reliability and on measuring an underlying dimension or trait, and selecting for use-only items that fit well with trait/
dimensional assumptions, can mean that these assessments really mainly end up measuring something quite different from the specific things 
students know and can do, and their progress in learning such things. Rather, they may measure students’ relative position on a scale of subject- 
specific aptitude and/or general aptitude (or I.Q.) and/or social class and family opportunity—things that make them fairly effective in predicting 
students’ ability to learn new things but which give little specific information about what they have actually learned (and certainly not reliable 
information about the specifics).  To be sure, because of ecological correlations, students who are high or low on these underlying traits, even 
when they have similar in-school exposure, are likely to have learned respectively more or less of the specific material, but the assessments will 
not give precise reports of the specifics, and the students’ relative positions on the scales are not likely to change much even if they do in fact 
really learn quite a bit of the specifics—among other things because the assessments are often also designed to be curriculum-independent or -neutral. 

are said to represent such things as “below basic, 
basic, proficient, and advanced” levels of performance 
on NAEP and on state assessments used for NCLB 
and accountability purposes. As teachers have found 
through hard experience, these scores and associated 
inferences are not of much help in designing instruc-
tional interventions to help students stay on track and 
continue to progress. This is one of the reasons that 
our various attempts at “data driven improvement” so 
often come up short.  

Assessments designed in this way are not capable of 
reflecting more complex conceptions of the ways 
students’ learning progresses, and at best they provide 
very crude feedback to teachers or to the system 
about what students actually are learning and what 
they can do. We don’t need to look very far beyond 
the recent experience in New York in which the State 
Board of Regents asked a panel of experts to review 
the difficulty of the state’s assessments of mathemat-
ics and English language arts and then responded to 
their report—that the assessments and performance 
standards had become too easy—by increasing the 
scale score levels on the assessments that would be 
considered to represent attainment of proficiency. 
That decision essentially wiped out much of the perceived 
performance gains and “gap-closing” touted by the 
current administration of the New York City Schools 
as the result of their tenure in office and has gener-
ated controversy about the effects of the city’s reforms 
(Kemple, 2010). The real story behind this contro-
versy is the essential arbitrariness of the assessment 
cut scores and the inability to offer any independent 
evidence about what students at any score level 
actually know or can do (or even evidence that chang-
es in those scores are actually associated with changes 
in what they otherwise might be observed to know 
and do). It is dismaying that quite a bit of the 
commentary on this event seems to treat the increase 
in the percentages of students in various groups who 
now fall below proficiency as an indication that their 
actual capabilities have declined, rather than as just a 
necessary consequence of raising the score required 
for a student to be considered proficient, but that bit 
of ignorance really just reflects the degree of mystifi-
cation that has been allowed to evolve around the 
design and meaning of state and national assessments.

iii. trajectories and assessment
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The alternative, of course, is to design assessments so 
that they discriminate among, and report in terms of 
differences in, the levels or specific stages of knowl-
edge and skill attained in particular school subjects; 
based on tested theories about how those subjects are 
learned by most students, as we and Knowing what 
Students Know (Pellegrino, Chudowsky, & Glaser, 
2001) argue. One of the big questions here is whether 
one should think of the growth of student learning as 
being an essentially continuous process, albeit a 
multi-dimensional one, or whether it is more fruitful 
to conceive of it as looking like a series of relatively 
discrete, and at least temporarily stable, steps or 
cognitive structures that can be described and made 
the referents of assessment (even if the processes that 
go on in between as students move from one step to 
the next might actually have a more continuous, and 
certainly a probabilistic, character). Chapter 4 in 
Knowing what Students Know provides a helpful 
overview of the kinds of psychometric and statistical 
models that have been developed to reflect these 
different views of the underlying reality, and many of 
the issues involved in their use. To oversimplify, there 
are choices between “latent variable” and multivari-
able models, on the one hand, and latent class models 
on the other. “Latent” simply refers to the fact that 
the variables or classes represent hypotheses about 
what is going on and can’t be observed directly. There 
are of course mixed cases. Rupp, Templin, and 
Henson (2010) provide a good treatment of the 
alternative models and relevant issues associated with 
what they call “Diagnostic Classification Models.” 

Some of the continuous models use psychometric 
assumptions similar to ones used in current assess-
ments but focus more on discriminating among items 
than among students, and stress a more rigorous 
approach to item design to enhance the educational 
relevance and interpretability of the results, while 
allowing for increased complexity by assuming that 
there can be multiple underlying dimensions in-
volved, even if each of them on its own has a linear 
character (see Wilson, 2005 for examples). The latent 
class models are in some ways even more exotic. 
Among the more interesting are those that rely on 
Bayesian inference and Bayesian networks (West et 
al., 2010) since those seem in principle to be able to 
model, and help to clarify, indefinitely complex ideas 
about the number of factors that might be involved in 
the growth of students’ knowledge and skill. But for 
policymakers these models are more complex and 
even more obscure than more conventional psycho-
metric models, and developing and implementing 
assessments based on them is likely to be more 
expensive. The relative promise and usefulness of the 

alternative models needs to be sorted out by use in 
practical settings, and it seems unlikely that there will 
be a significant shift toward the use of assessments 
designed in these ways until there have been some 
clear practical demonstrations that such assessments 
provide much better information for guiding practice 
and policy than current assessments are able to do.

In mathematics, a few investigators are developing 
assessments that reflect what we know or can 
hypothesize about students’ learning trajectories.  
For example, our colleagues Jere Confrey and Alan 
Maloney at NCSU are working on assessments that 
reflect their conception of a learning trajectory for 
“equipartitioning” as part of the development of 
rational number reasoning (Confrey & Maloney in 
press, 2010; Maloney & Confrey 2010). They began 
with an extensive synthesis of the existing literature 
and supplemented it by conducting cross sectional 
clinical interviews and design studies to identify key 
levels of understanding along the trajectory. From 
these open-ended observations they developed a 
variety of assessment tasks designed to reflect the 
hypothesized levels. Students’ performances on the 
tasks are being subjected to examination using Item 
Response Theory (IRT) models to see if the item 
difficulties and the results of alternative item selection 
procedures produce assessments that behave in  
the ways that would be predicted if the items in  
fact reflect the hypothesized trajectory and if that 
trajectory is a reasonable reflection of the ways 
students’ understanding develops. They are working 
with Andre Rupp, a psychometrician at the Univer-
sity of Maryland, in carrying out this iterative 
approach that over time tests both the choices of 
items and the hypothesized trajectory. Finding lack  
of fit leads to further design, and the project has  
been open to the use of multiple models to see  
which of them seem to offer the most useful ways  
to represent the data. The work on this project is 
ongoing. Across the country, other researchers and 
assessment experts are working on the development 
of similar assessment tools.

A major development on the national horizon that 
may result in much more effort and resources being 
devoted to solving the problems of developing usable 
assessments based on more complex conceptions of 
how students actually learn, and produce results that 
can be more legitimately interpreted in terms of what 
students actually know and can do, is the result of the 
competition the U.S. Department of Education ran 
that will provide support to two consortia of states  
to develop assessments that can measure students’ 
attainment of, and progress toward meeting, the new 

iii. trajectories and assessment
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Common Core State Standards (CCSS) for math-
ematics and English language arts. The consortia’s 
proposals suggest that they will seek to develop 
measures that will report in terms of much more 
complex conceptions of student learning (not just 
facts and concrete skills, but understanding, and 
ability to use knowledge and to apply it in new 
situations, and so on) and also to determine whether 
students are “on track” over the earlier grades to be 
able to meet the “college-and career-ready” core 
standards by sometime during their high school years. 
The proposals vary in how clearly they recognize how 
much change in current methods will be required to 
reach these goals, and how long it may take to do it, 
but there is agreement about the importance of the 
task as well as its scope. The federal resources being 
made available should at least ensure that quite a bit 
of useful development and experimentation will be 
done—perhaps enough to set the practice of assess-
ment design on a new path over the next few years.

With all this discussion of new and seemingly exotic 
psychometric models, however, we think there is 
something else to be kept in mind. In terms of 
everyday instruction, the application of latent variable 
or latent class models to the production of valid and 
reliable assessments that teachers might use to 
monitor student understanding is a bit like using a 
cannon to hunt ants. Adaptive instruction, as we have 
argued, involves systematic and continuous use of 
formative assessment, i.e. teachers’ (and in many cases 
students themselves’) reasoning from evidence in 
what they see in students’ work, and their knowledge 
of what that implies about where the students are and 
what they might need to overcome obstacles or  
move to the next step, to respond appropriately and 
constructively to keep the process moving. That 
doesn’t necessarily require the use of formal assess-
ment tools, since well prepared teachers should know 
how to interpret the informal and ongoing flow of 
information generated by their students’ interactions 
with classroom activities and the curriculum. That 

11	 Some scholars argue that another option to having research on learning trajectories directly influence practice through teacher knowledge is to 
develop diagnostic assessments that can be used more formally to support and enhance formative assessment practices (Confrey & Maloney, in 
press, 2010).  In the latter work, the authors seek a means to develop measures and ways of documenting students’ trajectories to track students’ 
progress both quantitatively and qualitatively.  A conference “Designing Technology-enabled Diagnostic Assessments for K-12 Mathematics,” 
held November 16-17, 2010 at the Friday Institute, explored these ideas further (report is forthcoming).  Some participants in the conference 
argued that such assessments certainly could be useful, but stressed their conviction that effective formative use would still require teachers to 
understand the research on mathematics learning that supports the conceptions of students’ progress that provides the basis for the assessment 
designs, and also to know the evidence concerning the kinds of pedagogical responses that would help the students given what the assessments 
might indicate about their progress or problems.  These perspectives represent a healthy tension, or at least a difference in emphasis, among 
researchers working on trajectories and formative and diagnostic assessment. 

12	 Barrett, Clements, & Sarama are using clinical teaching cycles of assessment and instruction to check for the correspondence between claims 
about student progress and the cognitive schema collections that are used to describe children’s thinking and ways of developing, or to design the 
large-scale assessments. This is being documented as a longitudinal account of eight students across a four-year span, at two different spans: 
Pre-K to Grade 2, and the other span from Grade 2 up through Grade 5 (Barrett, Clements, Cullen, McCool, Witkowski, & Klanderman, 2009).

evidence doesn’t have to meet the kinds of rigorous 
tests of reliability or validity that should be applied  
to high stakes and externally supplied assessments, 
because the teachers have the opportunity in the 
midst of instruction to test their interpretations by 
acting on them and seeing whether or not they get 
the expected response from the students—and by 
acting again if they don’t. Also, if they are uncertain 
about the implications of what they see, they have  
the option simply of asking their student(s) to 
elaborate or explain, or of trying something else to 
gather additional evidence.11 In the next section, our 
colleague Marge Petit provides a concrete example  
of what this process can look like in practice when  
it works well.

So we would argue that, while it is extremely impor-
tant to apply the new approaches we have described 
briefly here to the design of much better large-scale 
assessments whose reports would be more informative 
because they are based on sound theories about how 
students’ learning progresses, it also will be crucial  
to continue to focus on developing teachers’ clinical 
understanding of students’ learning in ways that can 
inform their interpretations of, and responses to, 
student progress and their implementation of the 
curricula they use. Teachers of course operate day  
to day on a different grain size of progress from the 
levels that large-scale assessments used for summative 
assessments are likely to target. The latter will tend  
to reference bigger intervals or significant stages of 
progress to inform policy and the larger system, as 
well as to inform more consequential decisions about 
students, teachers, and schools. Nevertheless, it would 
be crucial for there to be a correspondence between 
the conceptions of student progress teachers use in 
their classrooms and the conceptions that underlie the 
designs of large-scale assessments. The larger picture 
informing the assessment designs would help teachers 
to put their efforts in a context of where their 
students have been before and where they are 
heading.12 

iii. trajectories and assessment
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iii. trajectories and assessment

In addition, it should be helpful and reassuring to 
teachers if the assessments that others use to see how 
they and their students are doing are designed in 
ways that are consistent with the understandings of 
students’ progress they are using in the classroom, so 
that they can have some confidence that there will be 
agreement between the progress they observe and 
progress, or lack of it, reported by these external 
assessments. Also, it would of course be desirable if 
those external reports were based on models that 
provide real assurance that the reports are valid and 
can be relied on. 
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Imagine a 5th-grade teacher is analyzing evidence 
from student work on a whole number multiplication 
and division pre-assessment.  The pre-assessment 
consisted of a mix of word problems from a range of 
contexts and some straight computation problems. 
She notices one student correctly answered 80% of 
the problems, but solved the problems using repeated 
addition or repeated subtraction (Example 1 below).  
In the past, the teacher might have been pleased that 
the student had 80% correct. However, she now 
knows that the use of repeated addition (subtraction) 
by a 5th-grade student is a long way from that 
student’s attaining an efficient and generalizable 
multiplicative strategy such as the traditional 
algorithm (CCSSO/NGA, 2010).  She also knows 
that this student is not ready to successfully engage  
in the use of new 5th-and 6th-grade  concepts like 
multiplication of decimals (e.g., 2.5 x 0.78), or solving 
problems involving proportionality, which relies on 
strong multiplicative reasoning.   

Example 1: Use of Repeated Addition 
(VMP OGAP, 2007)

There are 16 players on a team in the 
Smithville Soccer League. How many 
players are in the league if there are 12 
teams?

The teacher observes and records other evidence 
about the strategies or properties that her students 
have used to solve the problems (e.g., counting by 
ones, skip counting, area models, distributive property, 
the partial products algorithm, and the traditional 
algorithm); the multiplicative contexts that have 

caused her students difficulty (e.g., equal groups, 
multiplicative change, multiplicative comparisons,  
or measurement); and the types of errors that the 
students have made (e.g., place value, units, calcula-
tion, or equations).  She will use this evidence to 
inform her instruction for the class as a whole, for 
individual students, and to identify students who 
could benefit with additional Response to Interven-
tion (RTI) Tier II instruction—a school-wide 
data-driven system used to identify and support 
students at academic risk.14

This teacher and others like her who have partici-
pated in the Vermont Mathematics Partnership 
Ongoing Assessment Project (VMP OGAP) have 
used the OGAP Multiplicative Framework (See 
Appendix B) to analyze student work as briefly 
described above, to guide their instruction, and 
engage their students in self-assessment.  In addition 
to administering pre-assessments, they administer 
formative assessment probes as their unit of instruc-
tion progresses. They use the OGAP Framework to 
identify where along the hypothesized trajectory 
(non-multiplicative – early additive – transitional – 
multiplicative) students are at any given time and in 
any given context, and to identify errors students make. 

 It is one thing to talk theoretically about learning 
trajectories and a whole other thing to understand 
how to transfer the knowledge from learning 
trajectory research to practice in a way that teachers 
can embrace it (see Figure 1 below). The latter 
involves designing tools and resources that serve as 
ways for classroom teachers to apply the trajectory in 
their instruction. 

iv. Learning Trajectories and Adap tive  
Instruction Meet the Realities of Practice13

13	   Written by Marge Petit, educational consultant focusing on mathematics instruction and assessment. Petit’s primary work is supporting the 
development and implementation of the Vermont Mathematics Partnership Ongoing Assessment Project (OGAP) formative assessment project. 

14	   There are different levels of intervention. RTI Tier II provides students at academic risk focused instruction in addition to their regular 
classroom instruction. (http://www.rti4success.org/)
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iv. Learning Trajectories and Adap tive Instruction  
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Figure 1. Transfer of Knowledge from Learning Trajectory Research into Classroom Practice

An example of a project that is developing tools and 
resources that bridge the gap between research and 
practice is the Vermont Mathematics Partnership 
Ongoing Assessment Project (OGAP), developed as 
one aspect of the Vermont Mathematics Partnership 
(VMP).15 In 2003, a team of 18 Vermont mathemat-
ics educators (classroom teachers, school and district 
mathematics teacher leaders, an assessment specialist, 
and a mathematician) were charged with designing 
tools and resources for teachers to use to gather 
information about students’ learning while they are 
learning, rather than just after their learning, for the 
sole purpose of informing instruction. Guided by 
findings of the NRC’s expert panels (Pellegrino, 
Chudowsky, & Glaser, 2001; Kilpatrick, Swafford,  
& Findell, 2001), the design team adopted four 
principles that have guided their work through  
three studies (VMP OGAP, 2003, 2005, and 2007) 
involving over 100 teachers and thousands of stu-
dents: 1) teach and assess for understanding (Kilpat-
rick, Swafford, & Findell, 2001; 2) use formative 
assessment intentionally and systematically (Pellegri-
no, Chudowsky, & Glaser, 2001; 3) build instruction 
on preexisting knowledge (Bransford, Brown, & 
Cocking, 2000); and, 4) build assessments on knowl-
edge of how students learn concepts (Pellegrino, 
Chudowsky, & Glaser, 2001).  Incorporating these 
elements into the tools and resources being developed 
provided a structure for helping OGAP teachers to 
engage in adaptive instruction as defined in the 
introduction to this report. 

The fourth principle, build assessments on how 
students learn concepts, led, over time, to the develop-
ment of item banks with hundreds of short, focused 
questions designed to elicit developing understand-

ings, common errors, and preconceptions or miscon-
ceptions that may interfere with solving problems  
or learning new concepts. These questions can be 
embedded in instruction and used to gather evidence 
to inform instruction. Importantly, the OGAP design 
team developed tools and strategies for collecting 
evidence in student work. One of these tools is the 
OGAP Frameworks; for multiplication, division, 
proportionality, and fractions. Teachers use the 
frameworks to analyze student work and adapt 
instruction (See, for example, the OGAP Multiplica-
tive Framework in Appendix B).  Each OGAP 
Framework was designed to engage teachers and 
students in adaptive instruction and learning. 
Teachers studied the mathematics education research 
underlying the OGAP Frameworks, and put what 
they learned into practice. The OGAP Frameworks 
have three elements: 1) analysis of the structures of 
problems that influence how students solve them,  
2) specification of a trajectory that describes how 
students develop understanding of concepts over 
time, and 3) identification of common errors and 
preconceptions or misconceptions that may interfere 
with students’ understanding new concepts or  
solving problems. 

From a policy perspective, an important finding  
from the Exploratory OGAP studies and the OGAP  
scale-up studies in Vermont and Alabama is that 
teachers reported that knowledge of mathematics 
education research and ultimately the OGAP 
Frameworks/trajectories helped them in a number of 
important ways.  They reported that they are better 
able to understand evidence in student work, use the 
evidence to inform instruction, strengthen their first- 
wave instruction, and understand the purpose of the 

15	   The Vermont Mathematics Partnership was funded by NSF (EHR-0227057) and the USDOE (S366A020002).  
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activities in the mathematics programs they use and 
in other instructional materials (VMP OGAP, 2005,  
2007 cited in Petit, Laird, & Marsden, 2010). 

The OGAP 2005 and 2007 studies present promising 
evidence that classroom teachers, when provided with 
the necessary knowledge, tools, and resources, will 
readily engage in adaptive instruction.  However, 
other findings from the OGAP studies provide 
evidence that developing tools and providing the 
professional development and ongoing support 
necessary to make adaptive instruction a reality on  
a large scale will involve a considerable investment 
and many challenges.

To understand the challenges encountered in 
implementing adaptive instruction better we return  
to the teacher who observed a 5th-grade student 
using repeated addition as the primary strategy to 
solve multiplication problems. This teacher has  
made a major, but difficult transition from summative 
thinking to formative/adaptive thinking. She 
understands that looking at just the correctness of  
an answer may provide a “false positive” in regards  
to a 5th-grade student’s multiplicative reasoning.  
She notices on the OGAP Multiplicative Framework 
that repeated addition is a beginning stage of 
development and that 5th-grade students should be 
using efficient and generalizable strategies like partial 
products or the traditional algorithm. On a large-
scale assessment one cares if the answer is right or 
wrong. On the other hand, from a formative assess-
ment/adaptive instruction lens, correctness is just one 
piece of information that is needed. A teacher also 
needs to know the strategies students are using, where 
they are on a learning trajectory in regards to where 
they should be, and the specifics about what errors 
they are making on which mathematics concepts or 
skills.  This is the information that will help teachers 
adapt their instruction.

This transition from summative to formative/adaptive 
instruction was a major challenge for OGAP  
teachers who were well conditioned to administra-
ting summative assessments ranging from class- 
room quizzes and tests to state assessments, all of  
which have very strict administration procedures.  
In formative assessment/adaptive instruction thinking 
your sole goal is to gather actionable information  
to inform instruction and student learning, not to 
grade or evaluate achievement. That means if the 
evidence on student work isn’t clear—you can ask the 
student for clarification or ask the student another 
probing question. 

OGAP studies showed that once a teacher became 
comfortable with looking at student work (e.g., 
classroom discussions, exit questions, class work, and 
homework) through this lens, their next question 
was—“Now that we know, what do we do about it?” 
As a case in point, one of the best documented 
fraction misconceptions is the treatment of a fraction 
as two whole numbers rather than as a quantity unto 
itself (Behr, Wachsmuth, Post, & Lesh, 1984;  VMP 
OGAP, 2005, 2007; Petit, Laird, & Marsden, 2010; 
Saxe, Shaughnessy, Shannon, Langer-Osuna, Chinn, 
& Gearhart, 2007). This error results in students 
adding numerators and denominators when adding 
fractions, or comparing fractions by focusing on the 
numerators or denominators or on the differences 
between them. Example 2 below from a 5th-grade 
classroom is particularly troubling, and very informa-
tive. In the words of one teacher, “In the past I would 
have been excited that a beginning 5th-grade student 
could add fractions using a common denominator.  
I would have thought my work was done. It never 
occurred to me to ask the student the value of the 
sum.” (VMP OGAP, 2005).  When faced with 
evidence such as found in Example 2, OGAP 
teachers made the decision to place a greater instruc-
tional emphasis on the magnitude of fractions and 
the use of number lines, not as individual lessons as 
they found them in their text materials, but as a daily 
part of their instruction. 

Example 2: Inappropriate Whole Number  
Reasoning Example

Added sums accurately and then used the magnitude 
of the denominator or numerator to determine that is 
closest to 20. (Petit, Laird,  & Marsden, 2010)

The sum of 1⁄12 and 7⁄8 is closest to

A.	 20
B.	 8
C.	 1⁄2
D.	 1

Explain your answer.

This action is supported by mathematics education 
research that suggests that number lines can help to 
build understanding of the magnitude of fractions 
and build concepts of equivalence (Behr & Post, 
1992; Saxe, Shaughnessy, Shannon, Langer-Osama, 
Chinn, & Gearhart, 2007; VMP OGAP, 2005 and 
2007). Research also suggests the importance of 
focusing on the magnitude of fractions as students 
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begin to operate with fractions (Bezuk & Bieck, 
1993, p.127; VMP OGAP, 2005, 2007 cited in Petit, 
Laird, & Marsden, 2010).  

This example has other implications for making 
adaptive instruction a reality in mathematics class-
rooms. Resources, like OGAP probes and frame-
works, must be developed that are sensitive to the 
research.  Teachers must receive extensive training in 
mathematics education research on the mathematics 
concepts that they teach so that they can better 
understand the evidence in student work (from 
OGAP-like probes or their mathematics program) 
and its implications for instruction. They need 
training and ongoing support to help capitalize on 
their mathematics program’s materials, or supplement 
them as evidence suggests and help make research-
based instructional decisions.

I realized how valuable a well designed, 
research-based probe can be in finding 
evidence of students’ understanding. Also, 
how this awareness of children’s thinking 
helped me decide what they (students) 
knew versus what I thought they knew. 
(VMP OGAP, 2005 cited in Petit and 
Zawojewski, 2010, p. 73)

In addition, while it is true that formative assessment 
provides teachers the flexibility “to test their interpre-
tations by acting on them and seeing whether or not 
they get the expected response from the students—
and acting again if they don’t” (see Section III of  
this report), OGAP studies show that teachers who 
understand the evidence in student work from a 

iv. Learning Trajectories and Adap tive Instruction  
Meet the Realities of Practice

research perspective are looking for research-based 
interventions.  Drawing on my own experience as  
a middle school teacher in the early 1990s when  
I was faced with students adding numerators and 
denominators (e.g., 3⁄4 + 7⁄8 = 10⁄12), I would re-teach 
common denominators “louder and slower,” never 
realizing that the problem was students’ misunder-
standing magnitude or that students did  
not have a mental model for addition of fractions  
as suggested in the research.   

While there is research on actions to take based on 
evidence in student work, much more needs to be 
done if the potential of adaptive instruction is to be 
realized. Research resources need to be focused not 
only on validating trajectories as a research exercise, 
but on providing teachers with research-based 
instructional intervention choices.  

OGAP teachers are now recording on paper a  
wealth of information on student learning as de-
scribed earlier in this chapter.  To help facilitate this 
process, OGAP is working closely with CPRE 
researchers from the University of Pennsylvania and 
Teachers College, Columbia University, and with the 
education technology company, Wireless Generation, 
in developing a technology-based data entry and 
reporting tool grounded on the OGAP Multiplicative 
Framework.  The tool will be piloted in a small 
Vermont-based study during the 2010-2011 school 
year. It is designed to make the item bank easily 
accessible; it provides a data collection device based 
on the OGAP Multiplicative Framework linked to 
item selection (See Figure 2).  The tool is designed  

Figure 2: Draft Evidence Collection Tool that Uses Touch Screen Technology.
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to provide reports that show where on the trajec- 
tory (OGAP Framework) each student is at any  
given time, with any given problem structure, and  
across time.  It also provides results about accuracy  
and errors, and misconceptions by students and by  
the class.

Students’ performances with respect to learning 
trajectories, like those in the OGAP Frameworks,  
do not simply increase monotonically. Rather 
students move back and forth along the trajectory  
as they interact with new contexts or more complex 
numbers until they have fully developed their 
multiplicative reasoning (VMP OGAP 2005, 2007; 
Clements, & Sarama, 2009).  Development of tools, 
like the Wireless Generation tool being piloted, will 
need to account for this movement if they are to 
represent learning trajectories in a meaningful way.  

A very important point here is that OGAP and the 
Wireless tool being developed is NOT taking the 
teacher out of the equation as some multiple choice-
based diagnostic assessments are purporting to do,  
to make it easier for a teacher. Rather, the project  
has recognized the importance of empowering the 
teacher with knowledge of the research that they  
use when analyzing student work and making 
instructional decisions. These are the cornerstones  
of adaptive instruction. Our hypothesis continues  
to be that it is the knowledge of the mathematics 
education research that empowers teachers, not just 
the data from the results of assessments. 

From a policy perspective, to accomplish implementa-
tion of adaptive instruction on a large scale our work 
has shown the importance of capitalizing on existing 
resources and strategies. In Vermont, this meant 
working with mathematics teacher leaders who  
were graduates of a three-year masters program in 
mathematics (the Vermont Mathematics Initiative).  
OGAP professional development was provided 
directly to teacher leaders in two stages.  The first 
stage focused on teacher leader knowledge, and  
the second phase provided the teacher leaders with 
support as they worked with other teachers in  
their district.

Small pilots in Alabama have led to a decision by the 
Alabama Department of Education to make OGAP  
a major intervention strategy. Next June AMSTI 
(Alabama Mathematics and Science Teachers 
Initiative) leaders from across Alabama will receive 
OGAP training and support as they begin to engage 
Alabama teachers state wide.  They recognize this is  
a multi-year effort, but they are setting the stage for  
it to begin.  

Other district and state policies that value the use  
of formative assessment and adaptive instruction  
need to be put into place if these strategies are to  
be used at all by teachers. State standards that favor 
breadth over depth, or are not built on mathematics 
education research or districts’ use of unrealistic 
pacing guides linked to quarterly assessments will  
all serve as formidable barriers to the use of forma- 
tive assessment and adaptive instruction. 

Our work indicates that it is possible to engage 
teachers in adaptive instruction and to use learning 
trajectories as described above, but it will take a 
commitment by policymakers, material developers, 
mathematics education researchers, and educators  
at all levels to accomplish the goal.

iv. Learning Trajectories and Adap tive Instruction  
Meet the Realities of Practice
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One sees the difficulty with this standards 
business. If they are taken too literally, 
they don’t go far enough, unless you make 
them incredibly detailed. You might give  
a discussion of a couple of examples,  
to suggest how the standards should be 
interpreted in spirit rather than by the 
letter. But of course, this is a slippery slope.

Roger Howe, Yale, March 15, 2010 input 
to Common Core State Standards

… the “sequence of topics and perfor-
mances” that is outlined in a body of 
mathematics standards must also respect 
what is known about how students learn. 
As Confrey (2007) points out, developing 
“sequenced obstacles and challenges for 
students…absent the insights about 
meaning that derive from careful study  
of learning, would be unfortunate and 
unwise.” In recognition of this, the 
development of these Standards began 
with research-based learning progressions 
detailing what is known today about how 
students’ mathematical knowledge, skill, 
and understanding develop over time.

Common Core State Standards, 2010, p.4

Sequence, Coherence, and Focus in Standards

Standards, perforce, sequence as well as express 
priority. On what basis? By design, one hopes. I was  
a member of the small writing team for the Common 
Core State Standards (CCSS). As such, I was part  
of the design, deliberation and decision processes, 
including especially reviewing and making sense of 
diverse input, solicited and unsolicited. Among the 
solicited input were synthesized ‘progressions’ from 
learning progressions and learning trajectory research- 
ers, and sequences proposed by mathematicians.

This section will look at the general issues of sequence, 
focus, and coherence in mathematics standards from 
the perspective of the CCSS for Mathematics.

Cognitive Development, Mathematical Coherence, 
and Pedagogic Pragmatics

Decisions about 
sequence in stan-
dards must balance 
the pull of three 
important dimen-
sions of progression: 
cognitive development, mathematical coherence, and 
the pragmatics of instructional systems. The situation 
differs for elementary, middle, and high school grades. 
In brief: elementary standards can be more deter-
mined by research in cognitive development, and high 
school more by the logical development of math-
ematics. Middle grades must bridge the two, by no 
means a trivial span.

Standards sequence for grade levels; that is, the 
granularity of the sequence is year-sized. Standards 
do not explicitly sequence within grade level, although 
they are presented in an order that makes some sense 
for this purpose. 

Standards as a Design Project Informed by Evidence

The CCSS writing team had the unusual experience 
of working on the standards as a design project rather 
than as a political project. The charge was: design a 
good tool for improving mathematics achievement. 
Base it on evidence. Extensive input was organized 
from individuals, organizations and, especially, states. 
The states themselves organized input processes. 
Comprehending the variety of input and making use 
of it did, in fact, have several dimensions: finding 
good design suggestions at many levels, improve-
ments in communication, and uncovering disagree-
ments. Disagreements led the writers to balance 
clarity of focus, internal coherence and practical 
choices about the underlying issues  
that gave rise to the disagreements. Sometimes these 
choices felt political. Perhaps some were. Nonetheless, 
if one thinks of the CCSS as the quotient of the 
input that “goes into” a draft, politics was at most  
a remainder.

16	 Written by Philip Daro, Senior Fellow for Mathematics of America’s Choice and Director, San Francisco Strategic Education Research 
Partnership (SERP), a partnership of UC Berkeley, Stanford, and the San Francisco Unified School District.
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Standards are pulled in three 
directions…cognitive development, 
mathematical coherence, and the 
pragmatics of instructional systems.
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Crucial to the design, and much more important  
than politics, was the evidence from learning trajec-
tory research in the sequencing and content of  
the standards. The examples that follow show how 
learning trajectory research, mathematical coherence, 
and the constraints of instructional practice informed 
the design of the CCSS. Beyond their direct contri-
bution, working with learning trajectories engendered 
a way of thinking about sequence and coherence that 
synthesized mathematical development with human 
development and learning. This way of thinking 
extended beyond the specifics of the research and  
was very fruitful.

The CCSS incorporate a progression for learning  
the arithmetic of the base ten number system from  
K through Grade 5. A mathematically coherent 
development is difficult because the simple ideas on 
which the base ten system is based are too advanced 
for these grades: sums of terms that are products of  
a single-digit number and a power of ten, including 
rational exponents for decimal fractions. Pragmatic 
design choices had to be made. 

The CCSS for Grade 1 ask students to:

2.	� Understand that the two digits of a two-digit 
number represent amounts of tens and ones. 
Understand the following as special cases:

a.	 �10 can be thought of as a bundle of ten 
ones—called a “ten.”

b.	 �The numbers from 11 to 19 are composed  
of a ten and one, two, three, four, five, six, 
seven, eight, or nine ones. 

		  (CCSS, 2010)

This approach takes advantage of what the researchers 
call “unitizing” (Glasersfeld 1995; Steffe & Cobb, 
1988) by bundling ten ones into a ten to enable 
counting the tens and later adding and subtracting 
tens (as units).

The relative weight to give cognitive development  
vs. mathematical coherence gets more tangled with 
multiplication, the number line, and especially 
fractions. Understanding the arithmetic of fractions 
draws upon four prior progressions that informed  
the CCSS:  equipartitioning, unitizing, number line,  
and operations. 

The first two progressions, equipartitioning and 
unitizing, draw heavily from learning trajectory 
research. Confrey has established how children 
develop ideas of equipartitioning from early experi-

ences with fair sharing and distributing. These 
developments have a life of their own apart from 
developing counting and adding. Clements and also 
Steffe have established the importance of children 
being able to see a group(s) of objects or an abstrac-
tion like ‘tens’ as a unit(s) that can be counted. 
Whatever can be counted can be added, and from 
there knowledge and expertise in whole number 
arithmetic can be applied to newly unitized objects; 
like counting tens in base 10, or adding standard 
lengths such as inches in measurement. The progres-
sion begins before school age with counting concrete 
objects and progresses up through the grades to 
counting groups of objects, groups of tens, units of 
measurement, unit fractions and onward, as illus-
trated in Table 1 below.

Table 1.  Development of Equal Partitioning  
and Unitizing

The second two progressions feeding into fractions 
draw more heavily from the coherence of mathemat-
ics itself. The concept of number that includes 
rational numbers (and later, negative numbers and 
ordered pairs of numbers in a relationship between 
quantities) cannot be developed fully without the 
number line. In the CCSS, the number line is used  
to help define a unit fraction in third grade. In 
subsequent grades, operations with fractions are 
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Objects 3 objects + 5 objects = 8 objects

Pure numbers 3 ones + 5 ones = 8 ones

Groups of objects 3 groups of 10 objects + 5 groups 
of 10 objects = 8 groups of 10 
objects = 80

Groups of 10 ones 
are tens

3 tens + 5 tens = 8 tens

Equal lengths are 
units

3 inches + 5 inches = 8 inches

A length can be 
equipartitioned 
into equal sized 
units. 

¼ + ¼  + ¼ + ¼ = 1

A part of 1 inch, ¼ 
inch, can be 
counted, added, 
etc. as a unit

3 (1⁄4 inches) + 5 (1⁄4 inches) =  
8 (1⁄4 inches)

Unit fractions as 
pure numbers can 
be counted, added 
and multiplied

3(1⁄4) + 5(1⁄4) = 8(1⁄4) = 8/4

Expressions with 
letters can be read 
as uncalculated 
numbers

3(x + 1) + 5(x+1) = 8(x+1)  
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framed in part by interpreting them on the number 
line by building on whole number operations on the 
number line. The parallel between whole number 
operations and fraction operations depends on seeing 
unit fractions as something that can be counted.

Operations with whole numbers are the most reliable 
and robust mathematical resource for most children. 
In the CCSS, a distinction exists between calculating 
and reasoning algebraically with whole numbers. 
‘Calculating’ is treated in the Cluster of standards, 
“Number and Operations in Base Ten” and ‘reasoning 
algebraically with whole numbers’ is treated in the 
Cluster, “Operations and Algebraic Thinking.” It is 
this latter Cluster that develops concepts and fluency 
expressing operations as part of the language of 
mathematics: 3 + 5 is a phrase that refers to the sum 
of 3 and 5. The “+” is a conjunction in this phrase. 
Extending this basic language of operations from 
phrases with whole numbers (as nouns) to phrases 
with other units like 5(1⁄4) + 3(1⁄4) enables students  
to build on their most solid foundation: whole 
number arithmetic. 

In third grade, the CCSS introduces two concepts  
of fractions:

1.	� Understand a fraction 1 ⁄b as the quantity 
formed by 1 part when a whole is partitioned  
into b equal parts; understand a fraction a ⁄b  
as the quantity formed by a parts of size 1 ⁄b. 

2.	� Understand a fraction as a number on the 
number line; represent fractions on a number  
line diagram. 

a.	 Represent a fraction 1 ⁄b on a number line 
diagram by defining the interval from 0 to 1 as 
the whole and partitioning it into b equal parts. 
Recognize that each part has size 1 ⁄b and that 
the endpoint of the part based at 0 locates the 
number 1 ⁄b on the number line.

b.	 Represent a fraction a ⁄b on a number line 
diagram by marking off a lengths 1 ⁄b from 0. 
Recognize that the resulting interval has size 
a ⁄b and that its endpoint locates the number  
a ⁄b on the number line.

		  (CCSS, 2010)

The first concept relies on student understanding of 
equipartitioning. Confrey (2008) and others have 
detailed the learning trajectory that establishes how 
young children build up this equipartitioning concept 
of fraction. Yet by itself, this concept is isolated from 
broader ideas of number that, for the sake of math-

ematical coherence, are needed early in the study  
of fractions. These ideas are established through  
the second standard that defines a fraction as a 
number on the number line. This definition has a  
 lot of mathematical power and connects fractions  
in a simple way to whole numbers and, later, rational 
numbers including negatives (Wu, 2008). The role  
of the number line definition is not obvious coming 
to it from prior standards, let alone prior knowledge; 
its importance is evident in the standards that follow 
in subsequent grades. A teacher or test designer 
seeing exclusively within the grade level will miss the 
point. Multi-grade progression views of standards  
can avoid many misuses of standards. 

The Writing Team of CCSS received wide and 
persistent input from teachers and mathematics 
educators that number lines were hard for young 
students to understand and, as an abstract metric, 
even harder to use in support of learning other 
concepts. Third grade, they said, is early for relying  
on the number line to help students understand 
fractions. We were warned that as important as 
number lines are as mathematical objects of study, 
number lines confused students when used to teach 
other ideas like operations and fractions. In other 
words, include the number line as something to learn, 
but don’t rely on it to help students understand that  
a fraction is a number. We noted that this warning 
was based on present experience in the classroom  
and might be the result of poorly designed learning 
progressions related to learning the number line. 

The difference in advice on fractions on the number 
line was not easy to sort through. In the end, we 
placed the cognitively sensible understanding first 
and the mathematical coherence with the number 
line second. We included both and used both to build 
understanding and proficiency with comparing 
fractions and operations with fractions.

Does the number line appear out of the blue in third 
grade? No. We looked to the research on learning 
trajectories for measurement and length to see how  
to build a foundation for number lines as metric 
objects (Clements, 1999; Nührenbörger, 2001; Nunes, 
Light, & Mason, 1993). The Standards from Asian 
countries like Singapore and Japan were also helpful 
in encouraging a deeper and richer development of 
measurement as a foundation for number and quantity. 

Clements and Sarama (2009) emphasize the signifi-
cance of measurement in connecting geometry and 
number, and in combining skills with foundational 
concepts such as conservation, transitivity, equiparti-
tioning, unit, iteration of standard units, accumulation 
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of distance, and origin. They have shown that by around 
age 8, children can use a ruler proficiently, create their 
own units, and estimate irregular lengths by mentally 
segmenting objects and counting the segments. 

The CCSS foundation for the use of the number line 
with fractions in third grade can be found in the 
second grade Measurement standards (CCSS, 2010):

Measure and estimate lengths in standard units.

•	 Measure the length of an object by selecting and 
using appropriate tools such as rulers, yardsticks, 
meter sticks, and measuring tapes. 

•	 Measure the length of an object twice, using 
length units of different lengths for the two 
measurements; describe how the two measure-
ments relate to the size of the unit chosen. 

•	 Estimate lengths using units of inches, feet, 
centimeters, and meters.

•	 Measure to determine how much longer one 
object is than another, expressing the length 
difference in terms of a standard length unit.

Relate addition and subtraction to length.

•	 Use addition and subtraction within 100 to solve 
word problems involving lengths that are given in 
the same units, e.g., by using drawings (such as 
drawings of rulers) and equations with a symbol 
for the unknown number to represent the 
problem.

•	 Represent whole numbers as lengths from 0 on a 
number line diagram with equally spaced points 
corresponding to the numbers 0, 1, 2, …, and 
represent whole-number sums and differences 
within 100 on a number line diagram. 

This work in measurement in second grade is, in turn, 
supported by first grade standards (CCSS, 2010):

•	 Express the length of an object as a whole number 
of length units, by laying multiple copies of a 
shorter object (the length unit) end to end; under-
stand that the length measurement of an object is 
the number of same-size length units that span it 
with no gaps or overlaps. Limit to contexts where 
the object being measured is spanned by a whole 
number of length units with no gaps or overlaps.

This sequence in the CCSS was guided by the 
learning trajectory research. This research informed 
the CCSS regarding essential constituent concepts 

and skills, appropriate age, and sequence. Yet the goal 
of having the number line available for fractions came 
from the need for mathematical coherence going 
forward from third grade. This example shows how 
pull along these two dimensions—empirical research 
on learning and mathematical coherence—can 
happen in concert to make standards a better tool  
for teaching and assessment on both counts. 

Instructional Systems and Standards

Perhaps the most important consequence of standards 
is their impact on instruction and instructional 
systems. This impact is often mediated by high-stakes 
assessments, which will be dealt with later. 

An issue arises at 
the outset from  
a problematic 
convention in the 
standards genre: 
they are written as 
though students in the middle of Grade 5, for 
example, have learned approximately 100% of what  
is in the standards for Grades K-4 and half of 5,  
in other words, they present an “immaculate progres-
sion.” This is never close to possible in any real 
classroom. This difference between the genre conven-
tion of immaculate progression in standards and the 
wide variation of student readiness in real classrooms 
has important consequences. It means, for one thing, 
that standards are not a literal portrayal of where 
students are or can be at a given point in time.  
And, for me, the negation of ‘can’ negates ‘should’. 
Standards serve a different purpose. They map 
stations through which students are lead from 
wherever they start.

Still, the convention seems a sensible approach to 
avoiding redundancy and excessive linguistic nuance. 
But how does this mere genre convention drive the 
management of instruction? Test construction? 
Instructional materials and their adoption? Teaching? 
Expectations and social justice? Ah…the letter or the 
spirit and the slippery slope. 

The Rough Terrain of Prior Learning Where  
Lessons Lives

Standards imply a curriculum that would present a 
sequence of concepts and skills through the calendar: 
year to year, month to month, day to day. Textbooks 
and tests can be developed to match such a sequence 
at a surface level, but the underwater terrain of 
students’ prior knowledge will persist in giving shape 
to students’ engagement with this sequence. Each 
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…the “immaculate progression” in 
standards contrasts with the 
spectacular variation of student 
readiness in real classrooms
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student arrives at the day’s lesson with his or her own 
mathematical biography, including all of the particu-
larities of how—and how well—the student learned 
the content of the curriculum on his or her path 
through mathematics so far. This section examines 
how standards, and the learning trajectories  they are 
based on, relate to instructional programs that might 
more effectively work with the variety of what 
students’ bring to the beginning of each lesson. This 
diversity of student thinking and knowledge is a 
natural condition teachers have always faced (see  
Murata & Fuson, 2006 for a related discussion).

The teacher 
brings to this 
diversity an 
ambition for 
some mathemat-

ics to be learned. The mathematics has a location in 
another structure: the logical coherence of ideas that 
reflects the knowledge structure of mathematics 
(mathematical coherence). Thus, there is a manifold 
of three knowledge structures at play in the class-
room: the variety of what students bring, mathemati-
cal coherence, and the learning trajectories developed 
by research. As real as these structures may be, none  
is in plain sight for the teacher in the classroom.

What is in plain sight are standards, tests, textbooks 
and students’ responses to assigned work. What 
teachers know about the path a student has taken to 
the knowledge the student has at the time they first 
meet is likely to vary widely, depending on the quality 
of the assessments used in the school and district, the 
information systems in their school, and the time the 
student has been in the school or district. Nor have 
learning trajectory researchers fully mapped the 
territory of the mathematics standards with specific 
trajectories. And the full mathematical coherence of  
a particular topic is often beyond the mathematical 
education of the teacher. Under these conditions, 
standards can play a crucial mediating role. What is 
real may be hard to see, while standards flash brightly 
from every test, text and exhortation that comes the 
teacher’s way. To the extent that the standards have 
been well designed to embody the critical knowledge 
structures in a form handy for teachers and the 
makers of tools for teachers, the sequence and focus 
of instruction can be coherent with respect to 
mathematics and with respect to how students think 
and learn. To the extent that standards fail to  
harmonize the knowledge structures, they can add  
to the dissonance.

Learning trajectory research develops evidence and 
evidence-based trajectories (learning trajectories). 

Evidence establishes that learning trajectories are  
real for some students, a possibility for any student 
and probably modal trajectories for the distribution  
of students. Learning trajectories are too complex  
and too conditional to serve as standards. Still, 
learning trajectories point the way to optimal 
learn-ing sequences and warn against the hazards  
that could lead to sequence errors (see below). The 
CCSS made substantial use of learning trajectories, 
but standards have to include the essential mathe-
matics even when there has been little learning 
trajectory research on the topic. Standards have to 
function as a platform for instructional systems that 
can accommodate the variation in students, if not 
teachers, at each grade level. 

Standards can tempt districts to simplistic mechanisms 
that mismanage student variety.  One temptation to 
avoid is to impose strong standards-framed pressure 
in an accountability system that ignores student 
thinking on the principle that even the mention of 
student differences springs leaks of low expectations 
into the classrooms. It could name the territory 
between the knowledge students have and what 
standards demand the “achievement gap,” a dark void 
that focuses attention on unexplored distances not 
traveled, rather than on the steps that need to be 
taken. It could tell teachers to keep turning the pages 
of the standards-based textbook according to the 
planned pace, and rely on the sheer force of expecta-
tion to pull students along. At least this would create 
the opportunity to learn, however fleeting and poorly 
prepared students might be to take advantage of it. 
While this is better than denial of opportunity, it  
is a feeble, if not cynical, response to the promise 
standards make to students. Shouldn’t we do better?

What better options are there? Some nations, includ-
ing some high-performing nations, assume  
in the structure of their instructional systems that 
students differ at the beginning of each lesson. Many 
Asian classrooms, K-8, follow a daily arc from the 
initial divergence of students’ development (refracted 
through the day’s mathematics problem(s) through 
classroom discourse about the different “ways of 
thinking”) to a convergence of understanding a way 
of thinking that incorporates the mathematics to be 
learned.  Each student is responsible for understand-
ing each “way of thinking.” The teacher leads a closing 
discussion, which begins with the way of thinking 
that depends on the least sophisticated mathematics. 
Students who use less sophisticated mathematics of-
ten rely on good problem solving and sense making 
skills, so other students can learn from their approach 
as well as from approaches involving more sophisti-
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like riding a unicycle juggling balls 
you cannot see or count.
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cated mathematics.  The discussion is then led through 
two or three other ways of thinking ordered by the 
sophistication of mathematics deployed in the way  
of thinking. Each way of thinking is explicitly related 
to each other through questions and discussion. This 
process approximates beginning the lesson at the  
diversity of student thinking found in the class and 
converging on the mathematical coherence. The actual 
content of the discussion—the illustrations, analogies, 
explanations, diagrams, narratives of student action—
approximates a problem-specific slice of learning tra-
jectories that connect the varied starting points to the 
mathematics to be learned. The arc of each lesson be-
gins with divergence of prior experience and ends with 
convergence on mathematical understanding that be-
longs to a larger coherence framed by standards. 

Such a system requires enough time to achieve con-
vergence each day or two, which means enough time 
on a small number of problems that focus on a small 
number of topics. A hurried instructional system can-
not ‘wait’ for students each day. To make time for dai-
ly convergence, standards must require less to learn 
rather than more each year. A fortunate irony revealed 
by the accomplishments of the high-performing 
Asian systems reveals that teaching less can result in 
learning more; that is, reaching a more advanced 
mathematical level by learning a more coherent and 
elegant body of knowledge rather than a sprawl of 
clutter and fragments. A system that optimizes daily 
convergence will be more robust and accumulate less 
debt in the form of students unprepared for the next 
lesson, and the next course. Unlike the national debt, 
this debt does not compound quietly, but makes all  
of the noises of childhood and adolescence scorned. 

How can a system get from where it is to effective  
instruction using well-designed standards as a plat-
form? Start by understanding the tasks and then pre-
paring and supporting educators so they can accomplish 
the tasks. The core tasks are to assess the patterns of 
mathematical thinking, that is, the rough terrain of 
prior knowledge, that students bring to the classroom, 
and provide teachers with the curriculum and assess-
ment tools needed to help students move along tra-
jectories toward mathematical targets defined by the 
standards, give or take. We know enough to make 
learning trajectories and the mathematical coherence 
underlying the content and structure of the standards 
a top priority for teacher knowledge development.

With enough knowledge of relevant learning trajec-
tories and enough understanding of how learning tra-
jectories work, teachers will better anticipate and rec-
ognize the most common starting points they will 
find among their students (Murata & Fuson, 2006; 

Battista, 2010). They need knowledge of the relevant 
mathematical coherence so they can focus on the 
most valuable learning targets. And they need in-
structional tools (diagnostic lessons that make think-
ing visible rather than just “scoring” students) that il-
luminate rather than obscure student thinking. They 
need instructional programs, and lesson protocols that 
pose standards as the finish line, but accommodate 
variation of prior experience. They need instructional-
ly embedded assessments that make student reason-
ing and conceptualization visible rather than hiding 
them behind a score that, in effect, pins the student to 
the donkey of failure. They need time within the les-
son and across the unit to listen and respond to stu-
dents with guidance on revising their thinking. This 
requires standards that are within reach of students 
and teachers. 

The crucial issue in this situation is how well the 
standards-driven texts and tests improve the perfor-
mance of the instructional system in moving students 
along the learning trajectories. It is quite possible for 
standards to be out of whack with learning trajecto-
ries and actual student thinking so that they mislead 
instruction and diminish performance. If the se-
quences in the standards conflict seriously with learn-
ing trajectories, are mathematically incoherent, or are 
too far removed from students’ capacities, they can 
steer the instructional systems away from effective 
teaching and learning. Standards work best when they 
are reasonable targets for tested learning trajectories 
and when they illustrate a reasonable amount of 
mathematical coherence to help teachers respond ef-
fectively to real student thinking by moving them in 
the right directions. 

The foregoing discussion might seem to suggest that 
each standard is situated in a single trajectory. This is 
not typically the case. A standard depends on many 
earlier standards that are often in several different 
trajectories. Likewise, standards in subsequent grades 
that depend on the standard can be in several trajec-
tories. This web structure was illustrated by the frac-
tions example earlier in this report. Another impor-
tant example is the CCSS’s Grade 7 standard for 
proportional relationships (CCSS, 2010).

	 2. �Recognize and represent proportional relation-
ships between covarying quantities.

a.	 Decide whether two quantities are in a 
proportional relationship, e.g., by testing for 
equivalent ratios in a table or graphing on a 
coordinate plane and observing whether the 
graph is a straight line through the origin.

v. Standards and Learning Trajectories:  
A View from Inside the Development of  
the Common Core State Standards



47

LEARNING  TRAJECTORIES IN MATHEMATICS:  A Foundation for Standards, Curriculum, Assessment, and Instruction

b.	 Identify the constant of proportionality 
(unit rate) in tables, graphs, equations,  
diagrams, and verbal descriptions of propor-
tional relationships. 

c.	 Represent proportional relationships by 
equations. For example, total cost, t, is propor-
tional to the number, n, purchased at a constant 
price, p; this relationship can be expressed as  
t = pn. 

d.	 Explain what a point (x, y) on the graph of  
a proportional relationship means in terms  
of the situation, with special attention to the 
points (0, 0) and (1, r) where r is the unit rate.

This standard is the culmination of a manifold of 
learning trajectories and mathematical coherences 
that are reflected in progressions of standards in the 
CCSS, and is itself the beginning of subsequent  
progressions. Pat Thompson, Arizona State Universi-
ty, has remarked (2010, personal communication)  
that proportionality cannot be a single progression 
because it is a whole city of progressions (see also 
Clements and Sarama on “hierarchical interactional-
ism,” 2009).

This standard, which stands along side other stan-
dards on ratios and rates, explicitly draws on prior 
knowledge of fractions, equivalence, quantitative rela-
tionships, the coordinate plane, unit rate, tables, ra-
tios, rates, and equations. Implicitly, this prior knowl-
edge grows from even broader prior knowledge. The 
sequence supporting this standard barely captures the 
peaks of a simplification of this knowledge structure. 
The complexity of the manifold of learning trajecto-
ries guarantees that teachers will encounter a wide va-
riety of individual mathematical biographies involving 
proportional relationships in each class.

What can help teachers respond more effectively to 
the variety of readiness? Certainly not pressure to 
“cover” the standards in sequence, to keep moving 
along at a good pace to make sure all students have  
an ‘opportunity’ to see every standard flying by. 
Knowledge of relevant learning trajectories would 
help teachers manage the wide variety of individual 
learning paths by identifying a more limited range of 
specific types of reasoning to expect for a given type 
of problem (Battista, 2010). Even hypothetical learn-
ing trajectories can do more good than harm because 
they conceptualize the student as a competent knower 
and learner in the process of learning and knowing 
more (Clements & Sarama, 2004). The standards, 
based as much as possible on tested learning trajecto-
ries, identify what direction to lead the students from 

wherever they begin the lesson. A curriculum, based 
on the standards, with the diagnostic value of reveal-
ing how different students see the mathematics—how 
they think about it—and where they are along the 
learning trajectory would also help. 

Even an instructional system with incomplete and 
imperfect knowledge of learning trajectories and ac-
tual student thinking treats students as works-in-
progress and focuses teaching on making progress 
along illuminated paths. Such systems could easily 
function more effectively than a system that inter-
preted standards as direct descriptions of where stu-
dents should be, and by implication characterizes real 
students as “unprepared” failures. Certainly, trajecto-
ry-informed instruction would be more motivating 
for teachers and students in its emphasis on the mal-
leability of proficiency in mathematics in contrast to 
gap-informed systems that highlight the fixedness of 
proficiency (Dweck, 1999, 2002; Elliot & Murayama, 
2008; Murayama & Elliot, 2009).

Do Standards Express the Form and Substance of 
What Students Learn?

What is the nature of the ‘things’ students learn? 
Sometimes what is wanted is a performance, as in 
learning to ride a bike. Standards, instruction, and  
assessment can happily focus on visible performances 
in such cases. But often, in mathematics anyway,  
what students learn are mental actions on mental  
objects, reasoning maneuvers and rules, representa-
tional systems and languages for mathematical objects 
and relations, cognitive schema and strategies, webs 
of structured knowledge, conventions, and so on.  
Many of these learned ‘things’ are not things, but  
systems that interact with other systems in thinking, 
knowing, and doing. Standards cannot express this 
kind of complexity; they refer to some observable  
surface of learning. But this linguistic convenience 
can lead to logical fallacies when we attribute unwar-
ranted ‘thinginess’ properties to what we actually  
want students to learn. 

The important point is that learned things are not 
thingy or topics. A sequence of topics or standards 
skims the surface and misses the substance—and even 
the form—of a subject. Compare, for example, the 
standard (CCSS, 2010), to what a student must actu-
ally know and do to “meet” the standard (for example, 
Steffe and Olive, 2009; Confrey, 2008; Confrey et al., 
2009; Wu, 2008, Saxe et al., 2005). 

•	 Add and subtract fractions with unlike denomi-
nators (including mixed numbers) by replacing 
given fractions with equivalent fractions in such a 
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way as to produce an equivalent sum or difference 
of fractions with like denominators. For example,  
2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + 
c/d = (ad + bc)/bd.)

The standard gives a goal, but does not characterize 
the knowledge and competencies needed to achieve 
the goal. While this point may seem obvious, it gets 
lost in the compression chambers where systems are 
organized to manage instruction for school districts. 
Devices are installed to manage “pacing” and monitor 
progress with “benchmark assessments.” These devices 
treat the grade-level standards as the form and  
substance of instruction. That is, students are taught 
grade-level “standards” instead of mathematics. And 
this nonsense is actually widespread, especially where 
pressures to “meet standards” are greatest.  

Standards use conventional names and phrases for 
topics in a subject. To what do these refer? If the field 
had a well-understood corpus of cognitive actions, 
situations, knowledge, etc., then these names could 
refer to parts of this corpus. But the field, school 
mathematics, has no such widely understood corpus 
(indeed, it is an important hope that common stan-
dards will lead to common understandings of such 
things). What the names refer to, in effect, are the fa-
miliar conventions of what goes on in the classrooms. 
The reference degenerates to the old habits of teach-
ing: assignments, grading, assessment, explanation, 
and discussion. The standards say, ‘Do the usual as-
sortment of classroom activities for some content that 
can be sorted into the familiar names in the stan-
dards.’ We will call this “covering the standards” with 
instructional activity. 

“Covering” has a very tenuous relationship with 
learning. First, there are many choices about focus 
within a topic, coherence within and between topics, 
what students should be learning to do with knowl-
edge, how skillful they need to be at what, and so on. 
Teachers make these choices in many different ways. 
Too often, the choices are made in support of a class-
room behavior management scheme. Meanwhile, dif-
ferent students will get very different learning from 
the same offered activity, and moreover, the quality of 
the discussion, the assigned and produced work, and 
the feedback given to students will vary widely from 
teacher to teacher working under the blessing of the 
same standard.

Covering is weak at best. When combined with stan-
dards that are too far from the prior knowledge of 
students, and too many for the time available, the 
chemistry gets nasty in a hurry. Teachers move on 
without the students; students accumulate debts of 

knowledge (knowledge owed to them); and the next 
chapter and the next course are undermined. But 
managing instruction by “meeting the needs of each 
student” is equally weak, because it opens the door to 
self-fulfilling low ex-
pectations. The way 
through this dilemma 
is to use standards that 
focus the use of time 
where it really matters 
so there is time to  
respond to students 
thinking, rather than 
their needs. (And what, 
really, is a “need”?  
Usually it is defined as something a student gets 
wrong or cannot do, or even more vaguely as a topic 
within which a student performs poorly. As such, 
“needs” are uninformative as a basis for teaching deci-
sions or misinformative (when students are grouped 
by “needs”).

The starting point is the mathematics and thinking 
the student brings to the lesson, not the deficit of 
mathematics they do not bring. A standard defines  
a finish line, not the path. The path begins with the 
students’ prior knowledge and finishes with the “stan-
dard” knowledge. The path itself is described by learn-
ing trajectories and mathematical coherences.

Errors in Sequence, Focus, and Coherence

The questions raised in the previous section are not 
only design choices, but potential sources of error 
with consequences for the viability of instruction. The 
next two subsections examine the types of errors that 
could menace a standards-based system.

Types of Sequence Errors

There are several types of errors with serious conse-
quences for students and teachers in the way stan-
dards might be sequenced. A common type of 
sequence error occurs when a concept, B depends on 
A2 version of concept A, more evolved than the A1 
version; Standards have only developed A1. Student 
tries to learn B using A1 instead of A2. For example, 
rate, proportional relationships and linearity (B) 
depend on understanding multiplication as a scaling 
comparison (version A2), but students may have only 
developed version A1 concept of multiplication, the 
total of things in a groups of b each.

In the CCSS, multiplication is defined in Grade 3 as 
a x b = c means a groups of b things each is c things. 
In Grade 4, the concept of multiplication is extended 

v. Standards and Learning Trajectories:  
A View from Inside the Development of  
the Common Core State Standards

… managing instruction with a 
system of “covering” standards that 
are  too many and too far from 
students’ prior knowledge is not 
management but posturing… the key 
is to respond to students’ thinking, 
not their so-called “needs”… ‘need’ 
names a sled to low expectations



49

LEARNING  TRAJECTORIES IN MATHEMATICS:  A Foundation for Standards, Curriculum, Assessment, and Instruction

to comparison where c = a x b means c is a times larger 
than b. In Grade 5, the CCSS has:

5.   Interpret multiplication as scaling (resizing), by:

a.  Comparing the size of a product to the 
size of one factor on the basis of the size 
of the other factor, without performing 
the indicated multiplication. 

b.  Explaining why multiplying a given 
number by a fraction greater than 1 
results in a product greater than the given 
number (recognizing multiplication by 
whole numbers greater than 1 as a 
familiar case); explaining why multiplying 
a given number by a fraction less than 1 
results in a product smaller than the given 
number; and relating the principle of frac-
tion equivalence a/b = (n×a)/(n×b) to the 
effect of multiplying a/b by 1.

		  (CCSS, 2010)

In Grades 6 and 7, rate, proportional relationships 
and linearity build upon this scalar extension of 
multiplication. Students who engage these concepts 
with the unextended version of multiplication (a 
groups of b things) will have prior knowledge that 
does not support the required mathematical coher-
ences. This burdens the teacher and student with 
recovering through learning trajectories. This will be 
hard enough without ill sequenced standards causing 
instructional systems to neglect, in this case, extend-
ing multiplication to scaling. 

Major types of sequence errors include: 

1.	 Unrealistic:

a.	 Too much, too fast leaving gaps in learning 
that create sequence issues for many students. 
The system cannot deliver students who are in 
sequence or handle so many students out of 
sequence. Rushing past reasoning with operations 
on whole numbers to teach answer-getting calcula-
tions leaves huge gaps in the foundations of algebra.

b.	 Distribution of prior mathematics knowl-
edge and proficiency in the student (and 
teacher) population is too far from the standards, 
and there is no practical way to get students 
close enough in time for sequence. 

2.	 Missing ingredient: 

a.	 A is an essential ingredient of B, but 

standards sequence B before A. Students try  
to learn fractions before essential concepts of number 
are available, for example, the number line.

b.	 Coherence requires progression ABC, but 
standards only have AC.

c.	 Term is used that has insufficient definition 
for the intended use.

3.	 Cognitive prematurity: 

a.	 B depends on cognitive actions and  
structures that have not developed yet. 

b.	 B is a type of schema or reasoning system, 
and the learner has not developed that type of 
schema or system. Base ten arithmetic, i.e. place 
value, depends on unitizing groups of ten, but some 
students have not acquired unitizing schema that 
can apply to “tens”.

c.	 Student develops immature version of B and 
carries it forward (see also 6).

4.	 Contradiction: 

a.	 Cognitive development entails ABC, 
mathematical logic entails CBA.

5.	 Missing connection: 

a.	 B is about or depends on connection between 
X-Y, but X-Y connection is not established.

6.	 Interference: 

a.	 B depends on A2 version of A, which is 
more evolved than A1 version, standards have 
only developed A1. Then student tries to learn  
B using A1 instead of A2.

b.	 B belongs nestled between A and C, but D 
is already nestled there. When learning B is 
attempted, D interferes.

7.	 Cameo: 

a.	 B is learned but not used for a long time. 
There is far too much time before learning C 
such that C depends on B. B makes a cameo 
appearance and then gets lost in the land of free 
fragments. Absolute value and scientific notation 
are often cameo topics long before they are useful. 
Properties of operations are treated as cameos when 
their routine use should be made explicit rather 
than hidden behind tricks and mnemonic devices 
for getting answers, e.g. “FOIL”.
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8.	 Hard Way:

a.	 C needs some ideas from B, but not all the 
difficult ideas and technical details that make  
B take more time than it is worth and make  
it hard for students to find the needed ideas  
from B, so C fails.

b.	 There are multiple possible routes to  
get from A to E, and the standards take an 
unnecessarily difficult route.

9.	 Aimless:

a.	 Standards presented as lists that lack 
comprehensible progression.

Types of Focus and Coherence Errors

The issues of focus and coherence in standards 
deserve more attention than we will give them here. 
Nonetheless, learning trajectories interact with 
coherence and focus in standards. The following are 
critical types of error of focus and coherence:

1.	 Sprawl:

a.	 Mile wide, inch deep. Large collection of 
standards dilutes the importance of each one.

b.	 Standards demand more than is possible in 
the available time for many students and 
teachers, so teachers and students are forced to 
edit on the fly; this is the opposite of focus.

c.	 Standards are just lists without enough 
organizational cues for a hierarchy of concepts 
and skills.

2.	 Wrong grain size:

a.	 The granularity is too specific or too general. 
The important understanding is at a certain 
level of specificity, where the structure and the 
cognitive handles are, and the grain size does 
not match up to prior knowledge. (As in 
Aristotle’s Ethics, the choice of specificity  
is a claim that should be explicit as a claim  
and defended.)

b.	 The granularity is too fine. Complex ideas 
are chopped up so the main idea is lost; the 
coherence may be evoked, but not illuminated. 
Alignment transactions in test construction  
and materials development miss the main point 
but ‘cover’ the incidentals (e.g., students can 
perform the vertical line test but do not know 
what a function is or how functions model 
phenomena.)

3.	 Wrong focus:

a.	 Focus on answer-getting methods, often 
using mnemonic devices, rather than mathematics.

4.	 Narrow focus:

a.	 Just skills, just concepts, just process, or just 
two out of the three.

5.	 Priorities do not cohere:

a.	 Fragments have large gaps between them. 

b.	 Grain size too fine.

6.	 Congestion: 

a.	 Some grade levels are congested with too 
much to be learned; density precludes focus.

b.	 B, C, D are all being learned at once, but 
cognitive actions needed for learning can only 
handle one or two at a time. Only BC and CD 
are learned, but the essential point is learning 
BCD and the system BC-BD-CD.

7.	 Inelegance:

a.	 AXBYCZ is equivalent to ABC and time 
and cognition are wasted on X, Y, and Z.

8.	 Waste: 

a.	 Time and cognition are invested in B, and  
B is not important.

9.	 Resolution of hierarchy: 

a.	 The hierarchal relationship between 
standards is not explicated, and details are 
confused with main ideas. 

b.	 The hierarchy of standards does not explain 
relationships among ideas, it just collects 
standards into categories.

10.	Excessively literal reading:

a.	 This error is in the reading as much as the 
writing; it leads to fragmented interpretation  
of the subject, losing the coherence among  
the standards.

b.	 Reading individual standards as individual 
ingredients of a test. When the explicit goal is 
to have the ingredients cook into a cake, tasting 
the uncooked ingredients is a poor measure of 
how the cake tastes (although it is related). The 
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goal, as stated in the grade-level introductions 
and the practices standards, is for the students 
to cook.

Assessment

An assessment system designed to help steer the 
instructional system must give good information 
about direction as well as distance to travel. A system 
that keeps telling us we are not there yet is like a  
kid in the back seat whining “are we there yet? How 
much further?” In the U.S., our state assessment 
systems whine with scores that tell us how many 
students have met the year’s standards in contrast  
to giving us a location in a map of trajectories. We 
measure failure and define success as “less failure.” 

Knowing an estimate for how many students are 
“proficient” serves a broad purpose that I hesitate to 
call by its customary name, ‘accountability’, because  
I cannot figure out exactly who is accountable to 
whom for what when it is said ‘schools’ must be ac-
countable. Yet it may serve the broad and important 
purpose of enabling the interested to compare perfor-
mance from place to place and time to time. Disag-
gregating scores by student sub-populations serves 
the critically important purpose of telling us how  
well we are achieving the social justice goals of public 
schooling. Yet the assessment results are used for 
many purposes in policy formation and management 
that go well beyond the design specifications of the 
assessment. How valid are these uses of the typical 
assessments? Do we need assessments designed for 
these uses?

Validity

Validity is a property of a use of an assessment, not  
of the assessment per se. The intended use of stan-
dards-based school accountability tests is to motivate 
and steer schools with carrots and sticks based on 
tests. Are the tests valid for this use? The empirical 
validity question is: are districts, schools, teachers,  
and students motivated and steered in the right 
directions? Hmmm…

How can we improve the validity of using formative 
and summative assessment for steering the system,  
at each level of the system? Too many “periodic” 
assessments at the district level are images of the state 
test, which is a fuzzy image of the standards, in part 
because the standards imply a full-year of instruction, 
not just an hour or two of testing. State tests were  
not designed with this use in mind. Perhaps we 
should design formative assessment that informs 

substantive feedback during the course of instruction 
first. The design of state tests could then be based  
on such formative assessment, rather than the other 
way around. 

What makes an assessment formative? Its use to in-
form instruction, and to do this requires three things: 
1) Timing: the assessment is available and used while 
instruction is still going on, while there is still time 
for instruction to respond to information; 2) Feed-
back: the assessment informs, that is the feedback has 
content (mathematical content) not just value judg-
ment; and 3) Motivation: the assessment responds  
to learning (growth); the relationship between assess-
ment and what should be studied is transparent and 
direct, not two different species of work that share a 
common topic or standard; test items look like the 
class work and homework implied by the standards, 
not like a psychological instrument.

Summative uses of assessment have their own issues. 
Summative assessment must:

•	 Focus on the priorities established in the standards;

•	 Report in categories (like “proficient”) that mean 
what people rely on them to mean (ready for the 
next grade level, as validated by empirical studies);

•	 Detect the growth along progressions in the 
standards (progressions are the construct; the 
construct is not “difficulty”);

•	 Fit to population: detect growth across the distribution;

•	 Fit within operational constraints: time, money, 
and schedule; and

•	 Be worthy of imitation for local periodic  
assessments: show thinking and knowledge.

There are trade-offs: optimizing score reliability vs. 
optimizing information about student knowledge, 
reasoning and how they get the wrong (or right) 
answer; optimizing ease of aggregating reports up  
the hierarchy vs. value for teachers inside instruction. 
The need for both implies the need to allocate time 
and resources to both.

There is duplicity in purpose for assessment that 
mirrors the two faces of instruction: facing out from 
instruction toward the system audiences (manage-
ment, leadership, community, parents, students as 
clients); and facing in toward student cognition and 
student actions, which is where learning happens.
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Out-facing reports require summary and aggregation. 
To add up, we need common units: inches to inches, 
dust to dust. If we have apples and oranges, we need a 
common denominator: 3 apples + 5 oranges = 8 fruit. 
Adding up requires blurring distinctions.  Reliability 
of scores is a measure of uni-dimensionality: apples to 
apples; average correlation of items to the total score 
adjusted to sample size (number of items). Assess-
ments that only optimize reliable scores have small 
value for the kinds instructional choices teachers 
make, and encourage a view of intelligence as fixed.

Facing in, we need tools that make what the student 
is doing visible to the teacher, to the student’s peers, 
and in the student’s own reflection (metacognition). 
We need the misspellings themselves rather than a 
spelling score. Instruction should respond to the 
actual spellings and provide feedback to the student 
on their spelling, not on how far they are from being 
a “proficient speller.” The teacher needs to know why  
a student is getting the fraction problem wrong (or 
right, for that matter), not just that he is. Knowing 
that a student scores low on fractions has even less 
value. A teacher needs to see the student working 
fraction problems, see where he goes wrong, and  
give feedback that responds to what that student 
actually does.

Too often, education efforts marked by confounding 
purposes invite the assumption of invalid models of 
learning. A common example that enfeebles many in-
structional systems stems from the illusion that poor 
performance is a trait of the student. This originates 
in the idea that we are measuring traits of students 
and a test score is a measure analogous to a student’s 
height in inches. Differences in scores become differ-
ences in students. Some students are good at mathe-
matics and some are weak at mathematics. Therefore, 
let’s sort students by score so we can respond to  
the differences with differences in instruction. What’s 
wrong with this analysis and decision process?

One-dimensional Tests for n-dimensional Constructs

Scores distribute students along one dimension, the 
trait “math,” or perhaps the trait “fractions.” There is  
a “gap” between where they are on the dimension and 
where their peers are. What can one do about this 
gap? The answer is usually “re-teach.” In other words, 
repeat the process that left a gap in the first place. 

Often, the ‘gaps’ are not gaps, but confusions that 
have their origins in instructional materials and 
classroom practice where long-term mathematics 
learning was swapped away for short-term answer 
getting. A well-known example is students not 

realizing that fractions are quantities, numbers with 
units (the unit fraction). Instead, they learned that 
fractions are two numbers, one on top and one on  
the bottom. Adding or dividing fractions is then a 
complicated procedure for doing arithmetic on tops 
and bottoms. The simple idea that adding or dividing 
two fractions is a case of adding or dividing two 
numbers is lost in the hard to remember procedures 
that make no sense. 

The reality that teaching involves leading a variety  
of students through a web of trajectories needs to be 
reflected in the way the assessment system defines the 
goals in the system. Even though we cannot define 
the web of trajectories with any precision, or locate 
individual students precisely in the web; the assess-
ments should be designed to incent the system to 
work in the web of trajectories, not ignore it by 
pretending students are scattered along a single track. 
This pretense rationalizes the view that mathematics 
achievement is a trait of the student rather than the 
work and responsibility of the system.

What are Standards?

The word “standards” as used in education has three 
quite different meanings that slip too easily from one 
to the other in the rhetoric of policy and decision-
making. Standards mean:

1.	 �The specification of content to be learned and 
proficiencies acquired (for example, CCSS).

2.	 �The level to be reached, a cut score on a test, the 
passing grade (the score required to be “profi-
cient” on a state test) — “performance stan-
dards,”  “achievement levels.”

3.	 �What people expect from themselves and each 
other as actual behavior and performance; what 
happens when a student does not do homework, 
disrupts class, submits sloppy work; when a 
teacher gives little feedback, allows poor work, 
teaches without preparation; in other words, the 
standards people live up to in the way they 
behave and take care of their responsibilities.

In this section, we are discussing the first meaning, 
but it is connected to the second when assessment 
comes into play. A score is not just a point on a scale, 
but a measure of how much of the content and 
proficiency in the standards a student has learned. 
What score range means a student is well-prepared  
to succeed in subsequent years? 
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The reporting categories on which the public relies 
when weighing in on policy debates do not appear to 
be valid for the purpose that the pretensions of its 
vocabulary suggest: the meaning of “proficient” is 
taken to mean ready and prepared to succeed at the 
next grade level. But it is usually a quite arbitrary 
category, above a cut score established by judges in a 
dubious process that has been criticized for ignoring 
substantial evidence from social psychology.

It should be routine to analyze how well students  
at different score levels in one grade perform in 
subsequent grades. Longitudinal relationships of 
scores across grades should be a core part of how 
interpretation categories like “proficient” are defined 
and used.  Yet we see little use of research evidence  
on how well ‘proficient’ students are prepared for 
future success in school. Questions of validity in 
standards-based assessment systems are serious, given 
the uses that standards-based management systems 
make of data.

This nation has come closer than it ever has to 
building a coherent education system. Nearly 80%  
of the states have adopted the CCSS. What is the 
next step? People are the next step. If people just  
swap out the old standards and put the new ones in 
old boxes and power points, into old systems and 
procedures and relationships, then nothing will change.

The CCSS can be a new platform for better instruc-
tional systems and better ways of managing instruction. 
The CCSS build on achievements of the last 2 decades, 
but also build on lessons learned in last 2 decades, 
especially lessons about time and teachers. One of the 
old boxes that needs replacing is “alignment” and its 
offspring, “covering standards” and “pacing guides.” 
These belong to a well intended, but weak concept for 
standards-based teaching and learning. Alignment is 
a bunt: lucky if you get to first base. We have to score. 
We need to swing at the ball. Covering standards is 
what a mile wide and an inch deep is called on the 
ground, in schools. Pacing means keep turning pages 
regardless of what students are learning: ignore 
student results. It is time to move on to something 
stronger, more effective. CCSS are designed as a tool 
to raise achievement, not just praise it.

What are standards? Standards are promises. Standards 
promise the student, “Study what is here, do your 
assignments and we promise you will learn what you 
need do well on the test.” We need tests and exam-
inations designed to keep that promise by rewarding 
that learning with a good score, and we need school 
systems designed to keep that promise. And beyond 
the tests which, after all, are part of the school system, 

we promise you that if you learn these things you  
will be well prepared to travel your life’s trajectory in 
pursuit of your civic, economic, and personal goals. 
The CCSS are merely the promise. We hope it is a 
well made promise in three ways: it builds so that 
keeping one grade’s promise makes keeping the next 
grade’s within reach, the system is capable of keeping 
the promise, and the promise is worth keeping.
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Our interest in learning trajectories arises from our 
belief that the normal/modal approach to instruction 
must change if we are to make progress toward our 
ambitious goal of preparing all of our children for 
success in postsecondary institutions and rewarding 
careers. We believe that teachers and students must 
take increased responsibility for monitoring students’ 
learning and understanding, and responding to the 
results of that monitoring by taking steps to keep 
learning on track toward the goals of instruction, or 
to get it on track if it has gone off.  This should occur 
continuously, and doing that requires two things:  
1) Understanding what the “track” is, in some detail; 
and 2) knowing what is likely to help keep a student 
moving forward on it, or to get him or her back on it, 
if they are having problems.  Our schools haven’t been 
very good at either of these tasks, but in fairness,  
we have not given them the tools they need to do it.  

We don’t have a good description or understanding  
of the key steps in the development of mathematical 
knowledge and understanding, and we don’t have a 
codified, warranted body of knowledge about what to 
do for students who manifest particular problems or 
misunderstandings at particular points along the path. 
Yet we have some knowledge in both of these domains, 
and we know what is required to deepen our knowledge. 
And we can make some reasonable guesses about 
what to do in the meantime in the areas where we 
lack knowledge. So our primary recommendation is 
that we should get on with this work, act on our best 
guesses where necessary, and keep track of how things 
work out; so that over time we can fill in the gaps.  

Putting the knowledge we have into practice is a 
more challenging problem.  There has been a lot of 
rhetoric about data-based decision-making in recent 
years, and too little attention to the usefulness of the 
data being provided to teachers. In general, the data 
are not fine-grained enough to be useful for diagnosis 
and not timely enough to support adaptive instruction. 
If we want teachers to understand student learning 
problems and respond quickly to help them, then we 
need to work harder to figure out what kinds of tools 
and support teachers need to observe and keep track 
of their students and what they might do to help 
them—and what happens because of that.  We also 
have a lot to learn about the logistics of doing this  
in real classrooms with lots of students. Adaptive in-
struction may require re-organization of schools and 
classrooms. And we have a lot to learn about student 

motivation.  It clearly is not the case that all students 
are particularly interested in learning what we would 
like them to learn.  And if students do not increase 
their work effort, monitoring their progress and 
adapting instruction will not produce the gains we 
need to close achievement gaps and prepare our stu-
dents to be competitive in the global economy.

Just to point out one serious problem that must be 
addressed, we really don’t know how many different 
paths students are likely to take in mathematics and 
how that number may be influenced by curriculum  
or instructional choices, but we can hope that the 
number is finite and perhaps small, or that it can be 
effectively limited by choices of instructional trajecto-
ries without any harm to the students, or that we  
can identify a (small) set of common nodes through 
which almost all students will pass, even though their 
paths in between those nodes may be quite diverse.

The CCII Panel has discussed this issue and others, 
and the potential of learning trajectories in mathematics, 
the work that has been done on them, the gaps that 
exist in this work, and some of the challenges facing 
developers and potential users. We have concluded 
that learning trajectories hold great promise as  
tools for improving instruction in mathematics, and 
they hold promise for guiding the development of 
curriculum and assessment as well. We are agreed  
that it is important to advance the development of 
learning trajectories to provide new tools for teachers 
who are under increasing pressure to bring every  
child to high levels of proficiency. With this goal in 
mind, we offer the following recommendations:  

•	 Need to establish a respected research field on 
learning trajectories in mathematics.  Some 
researchers have told us that they have had trouble 
getting papers and articles on learning trajectory 
papers published.   This is a problem for all new 
research paradigms which present models that do 
not fit well within the conventions of mathemat-
ics education research. Funding agencies and 
research organizations need to make the impor-
tance of this research clear. The discussions about 
sequence, solution methods, and learning supports 
are really about what is mathematically desirable. 
We need forums where these issues can be 
discussed in on-going ways to build and refine our 
knowledge of learning trajectories and effective 
learning supports.
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•	 Initiate new research and development projects  
to fill critical knowledge gaps. There are major 
gaps in our understanding of learning trajectories 
in mathematics. These include topics such as:

»» Algebra 
»» Geometry
»» Measurement 
»» Ratio, proportion and rate 
»» Development of mathematical reasoning

An immediate national initiative is needed to support 
work in these and other critical areas and fill in the 
gaps in our understanding.

•	 Consolidate learning trajectories. For topics  
such as counting, or multiplicative thinking, for 
example, different researchers in mathematics 
education have developed their own learning 
trajectories.  While there are a lot of similarities 
among these trajectories, there are also some 
differences, and researchers tend to defend and 
advance their own ideas. The field needs to come 
together to review this work and consolidate it. 
This sharing could take two forms: 1) Researchers 
could come to agree on common nomenclature or 
ideas when possible, or 2) they could explain why 
certain trajectories for the same topic are different 
and why they might need to co-exist while being 
tested (Barrett & Battista, forthcoming chapter 
scheduled to appear in a volume edited by 
Confrey, Maloney, and Nguyen, in press, 2011).

•	 Initiate work on the integration and connec-
tions across trajectories. Developers of trajecto-
ries, and those who support their work, should 
seek collaborations with other developers to 
examine the connectivity and interactions across 
trajectories, and to consider the implications of these 
interactions for curriculum.  The work on trajecto-
ries within in a field like mathematics needs to be 
integrated for teachers as they cannot be expected 
to track students’ progress on multiple trajectories 
simultaneously.  Integration also would inform 
future work on learning trajectories and help 
standard-setters and curriculum developers 
determine what topics are most generative of 
student understanding of mathematics. Some will 
argue that it is too early to do this, but attempting 
to do it now will inform the development of the 
next generation of trajectories and help set 
priorities for that work. 

•	 Study development of students from different 
cultural backgrounds and with differing initial 
skill levels. We desperately need to understand 
how to accelerate the learning of students who 
enter school with lower literacy levels and also  
to understand how cultural backgrounds and  
early experiences affect developmental paths in 
mathematics. Researchers recognize that the 
pathways described by trajectories are not develop- 
mentally inevitable and that there may be multiple 
pathways to learning a given idea or practice.  
They also recognize that prior experience, knowl- 
edge, and culture influence learning. Therefore, 
there is a need to explore how diversity affects the 
development and application of learning trajectories, 
and whether, and how trajectories can help us 
close achievement gaps in mathematics.  This is 
particularly relevant in urban populations or 
schools with highly diverse groups of students.

•	 Share the available learning trajectories broadly 
within the R & D community. While the 
existing trajectories cover only parts of the K-12 
mathematics curriculum, and most have not had 
extensive testing in classrooms, they can provide 
useful information for groups working on state 
and national standards as well as for developers 
working on curriculum and assessment. The use  
of research in trajectories in formulating the 
Common Core State Standards (CCSS) is 
evidence of their value.  Although, the existing 
trajectories fill in only part of the picture, they 
provide clues about the structure and sequence of 
the missing parts of the curriculum.  At this point, 
the work has not been widely shared; small groups  
of researchers have been working on completion 
or validation of learning trajectories they have 
developed. While some of this work has been 
shared through books, journal articles, or confer-
ence papers, most of it is not readily accessible  
to those who need access to it.  In this regard,  
it is encouraging that there have been working 
conferences bringing researchers working on the 
development and testing of learning trajectories 
together to share their methods and findings. 
NSF or some other national organization should 
create a website where this work, including work 
in progress, can be displayed with all of the proper 
caveats. Even incomplete and untested work can 
be helpful to those who are working on standards, 
curricula, and assessments. 
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•	 Translate the available learning trajectories into 
usable tools for teachers. Bringing the research  
on learning trajectories to developers and teachers 
requires the development of new tools. Curricu-
lum developers need versions of trajectories that 
stress the learning supports, the key mathematics 
ideas, and the key questions for students so that 
they can support classroom teachers and students 
through the learning paths. Classroom teachers 
need overviews so they can see the pathway clearly 
before they start it. Prototypes of trajectories could 
be developed in collaboration with developers and 
teachers to build transitional tools and proce-
dures that encourage and support the use of 
adaptive instruction and the growth of teachers. 
Many current professional development programs 
attempt to support development of teachers’ 
practical knowledge of students’ ways of thinking 
in mathematics and foster new ways of conveying 
instructional ideas. The learning trajectories work 
is quite consistent with professional development 
projects focused on pedagogical content knowledge 
and needs to be incorporated into this main-
stream work.

•	 Validate the learning trajectories. Funding  
agencies should provide additional support for  
research groups to validate the learning trajectories 
they have developed so they can test them in 
practice and demonstrate their utility. An effort 
should be made to collect evidence that using 
learning trajectories to inform curriculum, in-
struction, assessment design, professional devel-
opment and/or education policy results in mean-
ingful changes in instruction and gains in student 
achievement. This evidence is needed to defend 
the investments needed to continue the work and 
fill in gaps, and to respond to skepticism ex-
pressed by various stakeholders about the value 
and significance of learning trajectories. 

•	 Invest in the development of assessment tools 
based on learning trajectories for use by teachers 
and schools. There are fundamental differences 
between assessments designed to distinguish how 
students perform compared to other students on 
general scales of “achievement” or ability, and as-
sessments designed to distinguish among particu-
lar levels in the development of student knowl-
edge and stages of sophistication in their under- 
 standing and ability to apply their knowledge of 
mathematics. Assessment tools of the latter type 
are needed to build and test trajectories and to 
provide teachers with the diagnostic information 
they need to adapt instruction to meet the needs 
of their students and also to give students them-

selves better information about where they stand 
with reference to their learning goals.  Adequate 
development of assessments of this sort will re-
quire fundamental advances in psychometric meth-
ods and supporting technologies, and that too will 
deserve increased investment. 

•	 Encourage more collaboration among mathemat-
ics education researchers, assessment experts, 
cognitive scientists, curriculum and assessment 
developers, and classroom teachers.  Inadequate 
communication among the groups that have an 
interest in the development and testing of learn-
ing trajectories in mathematics is an obstacle to 
further progress. There is a need to build better 
understanding and more collaboration across 
these domains. Funding agencies should seek to 
foster better and more frequent communication 
among these communities. The National Science 
Foundation (NSF), the Hewlett Foundation, and 
the Pearson Foundation have supported several 
meetings of this type, but more needs to be done 
to foster collaborative work. NSF or another 
funder might consider sponsoring “state of the 
work” conferences annually, or convening various 
stakeholders at special sessions (e.g., organizations 
convening at NCTM’s annual conference or other 
national meetings). They also might consider 
funding centers to work on learning trajectories 
and curriculum development where these different 
kinds of expertise and experience might be convened.

•	 And, finally as we undertake this work, remem-
ber that it is the knowledge of the mathematics 
education research that will empower teachers, 
not just the data from the results of assessments. 
This is extremely important and needs to be more 
clear from the outset and reinforced regularly.  
Otherwise some will seek to develop and promote 
tools —new technologies, new assessments, etc.—
to substitute for teacher knowledge. Good tools, 
as we argue above, are needed, but they will have 
powerful effects only if they are placed in the hands 
of practitioners who have a strong command of 
their domain and an inclination to use the knowl-
edge base in their field and learn from others to 
improve their practice. If we look at this problem 
as one of continuous improvement, then we will 
not expect practitioners to be expert in all parts  
of their domain, but we will expect them to devel-
op expertise, and to work collaboratively with 
others whose knowledge complements their  
own. And we will expect them to contribute to 
the knowledge base by constructing and testing  
hypotheses in partnership with other teachers  
and with researchers.  
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Why Should These Steps Be Taken?

In CPRE’s  earlier publication on the development 
and use of learning progressions in science (Corcoran, 
Mosher, & Rogat, 2009), we argued that learning 
progressions could help us shape, test, and refine poli-
cies and practices in the areas of curriculum, assess-
ment, teacher education, and professional develop-
ment and improve coherence and alignment across 
these domains.  Learning trajectories in mathematics 
have that same potential. 

First and foremost, learning trajectories translated  
into usable tools can help teachers rethink instruction, 
assessment, and interventions for students who fall 
behind. They will make it possible to improve teacher 
diagnosis of student understanding, and enable teach-
ers to practice adaptive instruction. Trajectories could 
provide teachers with the frameworks, tools, and  
resources needed to transform pedagogical content 
knowledge from a precious concept to an operational 
part of their practices.

Learning trajectories will help curriculum developers 
build mathematics programs that are more focused, 
better sequenced, and more coherent. New curricula 
should be consistent with established learning trajec-
tories and their key features should be incorporated into 
instructional materials (e.g., a coherent developmental 
sequence based on research, specification of learning 
performances, and valid assessments that support di-
agnoses derived from evidence of the learning perfor-
mances).  New curricula also offer opportunities to test 
and revise hypothetical trajectories addressing gaps in 
our knowledge of mathematics. 

Continued work on learning trajectories can help us 
revise and refine the CCSS over time, and rethink 
state assessments and professional development. By 
collaborating with researchers and developers on pi-
loting materials and assessments linked to trajectories, 
and by inviting researchers to collaborate on tasks 
such as standards revision, curriculum selection, a 
ssessment selection, and professional development,  
we can advance the work and contribute to the growth 
of our knowledge.  

Learning trajectories also could contribute to im-
provements in the design and operation of teacher 
education programs as well as the design of programs 
provided by local and regional professional development 
providers. For example, pre-service and professional 
development programs could help teachers develop 
deeper understanding of the central ideas in mathe-
matics, how students typically master these ideas and 
develop more sophisticated understanding over time, 

and how to diagnose student progress and instructional 
needs.  Trajectories could be used to help novice teach-
ers understand how student understanding develops 
over time and how instruction affects their development.  

Learning trajectories also can help to leverage the 
work done by mathematics education researchers and 
learning scientists by developing a body of work in 
the content areas that is immediately useful to policy-
makers and practitioners. Trajectories could bring fo-
cus to research; and instead of undertaking many 
small disconnected studies, the field could begin to 
build programs of research addressing the gaps in the 
progression work. This approach would build a stron-
ger knowledge base for teaching and for the develop-
ment of instructional tools and supports.  The research 
on trajectories could highlight the areas where more 
research is badly needed (e.g., research on topics lack-
ing trajectories, targeting specific age levels where our 
knowledge is thin, addressing the needs of culturally 
or linguistically diverse groups who do not perform 
well in mathematics, etc.).  

Learning trajectories have enormous potential, but  
as the recommendations listed above make clear,  
there is a great deal of work to be done to realize this 
potential. If we are serious about making our students 
college- and career-ready, and about eliminating 
achievement gaps, this is the work that must be done. 
Pursuing quick fixes and structural solutions to the 
problems of public education will not do the job. As 
we have learned in medicine, agriculture, and other 
fields, there is no substitute for developing basic 
knowledge and translating it into tools that practitioners 
can use to solve the problems they face everyday. As 
we recommended for science education, a serious  
research and development effort in mathematics is 
needed to provide our teachers with the tools they 
need to do the job.  Investing in learning trajectories 
would not solve all of our problems, but it would put 
us on the right path toward finding solutions. 
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Introduction

This table below presents a sample of mathematics 
learning trajectories, along with a few examples  
of research that supports the development of such 
trajectories. It is not meant to be exhaustive. Our goal 
is to provide a sense of the range of topics for which 
learning trajectories have been developed, and enough 
detail about the examples to provide a glimpse into 
their content. The table includes the work of those 
who have contributed to this report, together with 
some other examples of significant mathematics learn-
ing trajectory research. 

Some differences and similarities among learning tra-
jectories are clear from the table, but others are less 
apparent; several similarities and differences not  
captured in the table are worth noting briefly here. 
For example, some researchers focus primarily on  
instructional tasks or activities that teachers and  
others can use to elicit and assess children’s mathe-
matical understandings (e.g., Battista, 2006, 2007) 
whereas others focus more on tasks designed to  
support learners’ movement from one level of under-
standing to another in specific ways (Clements & 
Sarama, 2009; Barrett et al., 2009; Sherin & Fuson, 
2005; Confrey et al., 2009). In many cases, this  
distinction is hard to make (and in some cases the 
distinction doesn’t matter), but the purpose of a  
given learning trajectory does make a difference for 
the kinds of tasks or activities that get included in a 
trajectory. The result is that some present a continuum 
of tasks that are well-connected and build on each 
other in specific ways over time (e.g., Clements & 
Sarama 2009, Barrett et al., 2009), others present 
tasks that connect across topical areas of school mathe-
matics (e.g., Confrey et al., 2009), and others offer 
more detailed guidance to teachers in understanding the 
capacities and misconceptions of their students at  
different points in their learning of a particular topic 
(e.g., Battista, 2006; Sherin & Fuson, 2005).

A related difference is the degree to which a strictly 
ordered sequence of understandings and abilities is to 
be expected or supported: in some research programs, 
learners’ movements among levels are varied, with 
multiple routes or paths to higher levels (e.g., Battista, 
2006, 2007), whereas in other programs, learners are 

expected and encouraged to move through levels in a 
certain order (e.g., Clements & Sarama, 2009, Barrett 
et al., 2009). Others have found evidence that supports 
a hybrid of strict sequencing for some abilities and 
tasks, with multiple possible pathways to others (e.g., 
Confrey et al., 2009). There is a resulting difference  
in emphasis—on developing descriptions of different 
levels of children’s understanding and ability vs. iden-
tifying the most effective sequence for moving learn-
ers to higher levels of understanding of a given top-
ic—but of course, most learning trajectory research 
does both of these, at least to some extent.

While all researchers in this field are aware of typical 
pre-coherent ways of thinking that are often labeled 
‘misconceptions’, they focus on these in different ways 
in their work. Some of Battista’s “levels of sophistica-
tion,” for example, are themselves examples of “incor-
rect reasoning” that are precursors to important cor-
rections in reasoning. Confrey et al. (2009) include 
“predictable patterns of errors” as components of tra-
jectories, and include “obstacles” in their visual repre-
sentation of trajectories as paths through a conceptual 
corridor. Clements and Sarama (2009) include fairly 
detailed accounts of typical misconceptions in their 
descriptions of the levels, along with direct quotes 
from children in their studies to illustrate these. The 
diagnostic value of these different ways of focusing on 
incorrect, immature, or provisional student thinking 
makes a difference both for teachers and for research-
ers interested in understanding and documenting 
progress from prior knowledge to new knowledge. 

While there are also differences in grain size and level 
of detail included for each level or stage, and obvious 
differences in time span covered with each trajectory, 
the significance of these differences has more to do 
with the different purposes for which they have been 
developed—along with the constraints on resources 
available for the particular research programs—rather 
than a fundamental disagreement about ideal grain 
size or appropriate time span.17 As with learning  
progressions in science, the trajectories share a com-
mon purpose in developing instructional sequences 
that are directly linked to empirical evidence of what 
‘works’ (Corcoran, Mosher, & Rogat, 2009, p.8). 

Appendix A:  
A Sample of Mathematics Learning Trajectories

17	 Appropriate grain size was a point of contention during the August 2009 meetings held at the Friday Institute at NCSU, but the issue was 
framed by a larger discussion about the different purposes that learning trajectories serve. 
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Because learning trajectories weave together what  
we know about cognitive development, instructional 
practice, and the coherence of mathematical ideas, 
most learning trajectory research aims to answer 
questions about what ‘works’ by evaluating empirical 
evidence through all three lenses, at least to some  
extent. That is, the aim is to develop trajectories that: 
1) are chronologically predictive, in the sense that  
students do—or can, with appropriate instruction—
move successfully from one level to the next more or 
less in the predicted sequence of levels; 2) yield posi-
tive results, for example, deepened conceptual under-
standing and transferability of knowledge and skills, 
as determined by external assessment or by assessment 
built into the learning trajectory; and 3) have learning 
goals that are mathematically valuable, that is align 
with broad agreement on what mathematics students 
ought to learn (now presumably reflected in the  
Common Core State Standards (CCSS). 

At a more basic level, there is fundamental agreement 
among learning trajectory researchers on the focus on 
1) mathematical thinking that is typical of students at 
different ages and grade levels; 2) major conceptual 
shifts that result from the coalescence of smaller 
shifts; and 3) getting the sequence right, based on (1) 
and (2), for teaching pivotal mathematical ideas and 
concepts.18 Now that the CCSS for mathematics  
are out, they might serve to define more clearly the 
agreed upon goals for which specific learning trajec-
tories must still be developed, insofar as they describe 
the pivotal ideas and concepts of school mathematics. 
Getting the sequence right, however, is not guaran-
teed by these descriptions. It involves testing the  
hypothesized dependency of one idea on another, 
with particular attention to areas where cognitive  
dependencies are potentially different from logical 
dependencies as a mathematician sees them. 

As the empirical evidence grows for what works best 
to move students up the steepest slopes of learning, or 
most efficiently through a particular terrain of mathe-
matical insights and potential misconceptions, learn-
ing trajectory researchers are answering questions 
about when instruction should follow a logical sequence 
of deduction from precise definitions and when in-
struction that builds on a more complex mixture of 
cognitive factors and prior knowledge is more effec-
tive. As stated above, this table does not represent all 
of the research working to answer these questions. It 
does, however, provide a sense of the kinds of answers 

Appendix A:  
A Sample of Mathematics Learning Trajectories

18	 Developing a more precise way to talk about “major” conceptual shifts (and to distinguish them from not so major shifts) is one area for 
further theoretical and empirical investigation. Note that this issue shows up in the science work as well (see Wiser et al., 2009).

that are already available, as well as some sense of the 
key areas of mathematics and age groups for which 
important questions remain. 
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f o
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 c
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 d

ire
ct

 m
od

el
in

g 
of

 a
ll 

qu
an

tit
ie

s 
in

 a
 si

tu
at

io
n 

(c
ou

nt
in

g 
th

in
gs

 o
r c

ou
nt

in
g 

w
ith

 fi
ng

er
s)

; L
ev

el
 2

 (p
rim

ar
ily

 in
 G

ra
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t p
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e 

m
at

he
m

at
ic

al
 

as
pe

ct
s -

- t
he

 n
um

be
rs

 o
f t

hi
ng

s, 
th

e 
ad

di
tiv

e 
or

 su
bt

ra
ct

iv
e 

op
er

at
io

n 
in

 th
e 

sit
ua

tio
n,

 a
nd

 th
e 

qu
an

tit
y 

th
at

 is
 u

nk
no

w
n.

A
dd

iti
on

 a
nd

  
Su

bt
ra

ct
io

n 
 

(E
m

ph
as

iz
in

g 
C

ou
nt

in
g 

St
ra

te
gi

es
)

A
ge

s 1
-7

 y
rs

C
le

m
en

ts
 &

 S
ar

am
a 

(2
00

9)
C

le
m

en
ts

 a
nd

 S
ar

am
a 

de
ve

lo
p 

tw
o 

se
pa

ra
te

 tr
aj

ec
to

rie
s f

or
 a

dd
iti

on
 a

nd
 su

bt
ra

ct
io

n:
 o

ne
 fo

r 
co

un
tin

g-
ba

se
d 

st
ra

te
gi

es
, a

nd
 o

ne
 fo

r c
om

po
sit

io
n 

of
 n

um
be

rs
 a

nd
 p

la
ce

 v
al

ue
. Th

e 
co

un
tin

g-
ba

se
d 

st
ra

te
gi

es
 tr

aj
ec

to
ry

 b
eg

in
s w

ith
 a

 c
hi

ld
’s 

pr
e-

ex
pl

ic
it 

se
ns

iti
vi

ty
 to

 a
dd

in
g 

an
d 

su
bt

ra
ct

-
in

g 
pe

rc
ep

tu
al

ly
 co

m
bi

ne
d 

gr
ou

ps
, a

nd
 b

ui
ld

s o
n 

th
ei

r e
ar

ly
 a

bi
lit

y 
to

 a
dd

 a
nd

 su
bt

ra
ct

 v
er

y 
sm

al
l c

ol
le

ct
io

ns
 n

on
ve

rb
al

ly.
 In

st
ru

ct
io

na
l t

as
ks

 su
pp

or
t a

 y
ou

ng
 c

hi
ld

’s 
ab

ili
ty

 to
 fi

nd
 su

m
s 

up
 to

 3
+2

 u
sin

g 
a 

co
un

tin
g-

al
l s

tra
te

gy
 w

ith
 o

bj
ec

ts
, a

nd
 th

en
 to

 fi
nd

 su
m

s f
or

 jo
in

in
g 

an
d 

pa
rt

-p
ar

t-
w

ho
le

 p
ro

bl
em

s b
y 

di
re

ct
 m

od
el

in
g 

or
 co

un
tin

g-
al

l s
tra

te
gi

es
 u

sin
g 

ob
je

ct
s. 

A
ro

un
d 

th
e 

sa
m

e 
tim

e, 
ch

ild
re

n 
de

ve
lo

p 
th

e 
ab

ili
ty

 to
 so

lv
e 

ta
ke

-a
w

ay
 p
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s b
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 b
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 b
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f p
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 c
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ct

io
n.

 Th
e 

sp
at

ia
l v

isu
al

iz
at

io
n 

an
d 

im
ag

er
y 

tra
je

ct
or

y 
be

gi
ns

 w
ith

 d
up

lic
at

in
g 

an
d 

m
ov

in
g 

sh
ap

es
 to

 a
 sp

ec
ifi

ed
 lo

ca
tio

n 
by

 sl
id

in
g, 

an
d 

la
te

r, 
m

en
ta

lly
 tu

rn
in

g 
th

em
, a

nd
 th

en
 

in
cr

ea
sin

gl
y 

by
 sl

id
in

g, 
fli

pp
in

g, 
an

d 
tu

rn
in

g 
ho

riz
on

ta
lly

, v
er

tic
al

ly,
 a

nd
 th

en
 d

ia
go

na
lly

. 
A

ro
un

d 
ag
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, a
 c

hi
ld

 c
an

 p
re

di
ct

 th
e 

re
su

lts
 o

f t
ra

ns
fo

rm
at

io
ns

 u
sin

g 
m

en
ta

l i
m

ag
es

 o
f 

in
iti

al
 st

at
e, 

m
ot

io
n,

 a
nd

 fi
na

l s
ta

te
. I

ns
tr

uc
tio

n 
su

pp
or

tin
g 

th
e 

de
ve

lo
pm

en
t a

nd
 in

te
gr

at
io

n 
of

 
sy

st
em

s f
or

 co
di

ng
 sp

at
ia

l r
el

at
io

ns
 in

cl
ud

es
 “f

ee
ly

 b
ox

es
” t

ha
t c

on
ta

in
 sh

ap
es

 to
 id

en
tif

y 
th

ro
ug

h 
to

uc
h,

 ta
ng

ra
m

 p
uz

zl
es

, a
nd

 co
m

pu
te

r e
nv

iro
nm

en
ts

 in
vo

lv
in

g 
sn

ap
sh

ot
s w

ith
 fi

gu
re

s 
to

 m
at

ch
. Th

e 
tra

je
ct

or
y 

le
ad

s a
 c

hi
ld

 to
 v

ie
w

 sp
at

ia
l fi

gu
re

s f
ro

m
 m

ul
tip

le
 p

er
sp

ec
tiv

es
 b

y 
co

ns
tr

uc
tin

g 
m

en
ta

l r
ep

re
se

nt
at

io
ns

 o
f 2

D
 a

nd
 3

D
 sp

ac
e.

M
ea

su
re

m
en

t
A

ge
s 2
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 y
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(K
in

de
rg

ar
te

n)
N

R
C

 R
ep

or
t (

C
ro

ss
, W

oo
ds

, &
 

Sc
hw

ei
ng

ru
be

r, 
20

09
)

Th
e 

N
R

C
 re

po
rt

 d
isc

us
se

s t
he

 im
po

rt
an

ce
 o

f m
ea

su
re

m
en

t f
or

 co
nn

ec
tin

g 
th

e 
tw

o 
cr

uc
ia

l 
re

al
m

s o
f g

eo
m

et
ry

 a
nd

 n
um

be
r, 

an
d 

pr
es

en
ts

 e
le

m
en

ts
 o

f t
ea

ch
in

g-
le

ar
ni

ng
 p

at
hs

 fo
r l

en
gt

h,
 

ar
ea

, a
nd

 v
ol

um
e 

m
ea

su
re

m
en

t. 
Th

e 
re

po
rt

 p
ro

vi
de

s s
ig

ni
fic

an
tly

 m
or

e 
de

ta
il 

fo
r t

he
 te

ac
hi

ng
-

le
ar

ni
ng

 p
at

h 
fo

r l
en

gt
h 

m
ea

su
re

m
en

t, 
w

hi
ch

 is
 d

iv
id

ed
 in

to
 th

e 
ca

te
go

rie
s ‘

O
bj

ec
ts

 a
nd

 
Sp

at
ia

l R
el

at
io

ns
’ a

nd
 ‘C

om
po

sit
io

ns
 a

nd
 D

ec
om

po
sit

io
ns

’ a
nd

 o
rg

an
iz

ed
 in

to
 th

re
e 

le
ve

ls 
of

 
so

ph
ist

ic
at

io
n 

in
 th

in
ki

ng
: t

hi
nk

in
g 

vi
su

al
ly

/h
ol

ist
ic

al
ly,

 th
in

ki
ng

 a
bo

ut
 p

ar
ts

, a
nd

 re
la

tin
g 

pa
rt

s a
nd

 w
ho

le
s. 

Th
e 

re
po

rt
 e

m
ph

as
iz

es
 e

xp
er

ie
nc

es
 th

at
 g

iv
e 

ch
ild

re
n 

op
po

rt
un

iti
es

 to
 

co
m

pa
re

 si
ze

s o
f o

bj
ec

ts
 a

nd
 to

 co
nn

ec
t n

um
be

r t
o 

le
ng

th
, a

nd
 o

pp
or

tu
ni

tie
s t

o 
so

lv
e 

re
al

 
m

ea
su

re
m

en
t p

ro
bl

em
s t

ha
t h

el
p 

bu
ild

 th
ei

r u
nd

er
st

an
di

ng
 o

f u
ni

ts
, l

en
gt

h-
un

it 
ite

ra
tio

n,
 

co
rr

ec
t a

lig
nm

en
t (

w
ith

 a
 ru

le
r)

 a
nd

 th
e 

co
nc

ep
t o

f t
he

 z
er

o-
po

in
t. 

C
hi

ld
re

n’s
 e

ar
ly

 co
m

pe
-

te
nc

y 
in

 m
ea

su
re

m
en

t i
s f

ac
ili

ta
te

d 
by

 p
la

y 
w

ith
 st

ru
ct

ur
ed

 m
an

ip
ul

at
iv

es
 su

ch
 a

s u
ni

t b
lo

ck
s, 

pa
tte

rn
 b

lo
ck

s, 
an

d 
til

es
, t

og
et

he
r w

ith
 m

ea
su

re
m

en
t o

f t
he

 sa
m

e 
ob

je
ct

s w
ith

 ru
le

rs
; t

hi
s 

co
m

pe
te

nc
y 

is 
st

re
ng

th
en

ed
 w

ith
 o

pp
or

tu
ni

tie
s t

o 
re

fle
ct

 o
n 

an
d 

di
sc

us
s t

he
se

 e
xp

er
ie

nc
es

. 
C

hi
ld

re
n 

al
so

 n
ee

d 
ex

pe
rie

nc
e 

co
ve

rin
g 

su
rfa

ce
s w

ith
 a

pp
ro

pr
ia

te
 m

ea
su

re
m

en
t u

ni
ts

, c
ou

nt
in

g 
th

os
e 

un
its

, a
nd

 sp
at

ia
lly

 st
ru

ct
ur

in
g 

th
e 

ob
je

ct
 th

ey
 a

re
 to

 m
ea

su
re

, i
n 

or
de

r t
o 

bu
ild

 a
 

fo
un

da
tio

n 
fo

r e
ve

nt
ua

l u
se

 o
f f

or
m

ul
as

. B
y 

ar
ou

nd
 a

ge
s 4

-5
, m

os
t c

hi
ld

re
n 

ca
n 

le
ar

n 
to

 re
as

on
 

ab
ou

t m
ea

su
re

m
en

t, 
bu

t b
ef

or
e 

ki
nd

er
ga

rt
en

, m
an

y 
ch

ild
re

n 
la

ck
 u

nd
er

st
an

di
ng

 o
f m

ea
su

re
-

m
en

t i
de

as
 a

nd
 p

ro
ce

du
re

s, 
su

ch
 a

s l
in

in
g 

up
 e

nd
 p

oi
nt

s w
he

n 
co

m
pa

rin
g 

th
e 

le
ng

th
s o

f t
w

o 
ob

je
ct

s. 
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ts

 &
 S

ar
am

a 
(2

00
9)

C
le

m
en

ts
 a

nd
 S

ar
am

a 
em

ph
as

iz
e 

th
e 

sig
ni

fic
an

ce
 o

f m
ea

su
re

m
en

t i
n 

ea
rly

 m
at

he
m

at
ic

s i
n 

re
la

tin
g 

to
 c

hi
ld

re
n’s

 e
xp

er
ie

nc
e 

w
ith

 th
e 

ph
ys

ic
al

 w
or

ld
, i

n 
co

nn
ec

tin
g 

ge
om

et
ry

 a
nd

 n
um

be
r, 

an
d 

in
 co

m
bi

ni
ng

 sk
ill

s w
ith

 fo
un

da
tio

na
l c

on
ce

pt
s s

uc
h 

as
 co

ns
er

va
tio

n,
 tr

an
sit

iv
ity

, e
qu

al
 

pa
rt

iti
on

in
g, 

un
it,

 it
er

at
io

n 
of

 st
an

da
rd

 u
ni

ts
, a

cc
um

ul
at

io
n 

of
 d

ist
an

ce
, a

nd
 o

rig
in

. Th
ey

 
de

ve
lo

p 
se

pa
ra

te
 tr

aj
ec

to
rie

s f
or

 m
ea

su
re

m
en

t o
f l

en
gt

h 
(2

-8
 y

rs
), 

ar
ea

 (0
-8

 y
rs

), 
vo

lu
m

e 
(0

-9
 

yr
s)

, a
nd

 a
ng

le
 a

nd
 tu

rn
 (2

-8
+ 

yr
s)

, a
nd

 p
oi

nt
 o

ut
 th

at
 so

m
e 

re
se

ar
ch

 su
gg

es
ts

 sp
at

ia
l s

tr
uc

tu
r-

in
g 

de
ve

lo
ps

 in
 o

rd
er

 o
f o

ne
, t

he
n 

tw
o, 

th
en

 th
re

e 
di

m
en

sio
ns

; t
he

y 
em

ph
as

iz
e 

th
at

 co
m

pa
ri-

so
ns

 a
nd

 co
nt

ra
st

s a
m

on
g 

un
it 

st
ru

ct
ur

es
 in

 a
ll 
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ea

s s
ho
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d 
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 e

xp
lic

it 
th

ro
ug

ho
ut

. Th
e 

tra
je

ct
or

y 
fo

r l
en

gt
h 

m
ea

su
re

m
en

t i
nc

lu
de

s i
ns

tr
uc

tio
n 

th
at

 m
ov

es
 c

hi
ld

re
n 

fr
om

 in
fo

rm
al

 to
 

fo
rm

al
 m

ea
su

re
m

en
t: 

fr
om

 co
nv

er
sa

tio
ns

 a
bo

ut
 th

in
gs

 th
at

 a
re

 “l
on

g,
” “

ta
ll,

” e
tc

., 
to

 d
ire

ct
ly

 
co

m
pa

rin
g 

he
ig

ht
s a

nd
 le

ng
th

s, 
to

 u
sin

g 
th

ei
r a

rm
 a

s a
 u

ni
t o

f m
ea

su
re

m
en

t, 
to

 m
ea

su
rin

g 
w

ith
 to

ot
hp

ic
ks

 o
r o

th
er

 p
hy

sic
al

 o
r d

ra
w

n 
un

its
. B

y 
ar

ou
nd

 a
ge

 8
, c

hi
ld

re
n 

ca
n 

us
e 

a 
ru

le
r 

pr
ofi

ci
en

tly
, c

re
at

e 
th

ei
r o

w
n 

un
its

, a
nd

 e
st

im
at

e 
irr

eg
ul

ar
 le

ng
th

s b
y 

m
en

ta
lly

 se
gm

en
tin

g 
ob

je
ct

s a
nd

 co
un

tin
g 

th
e 

se
gm

en
ts

. Th
e 

tra
je

ct
or

y 
fo

r a
re

a 
m

ea
su

re
m

en
t f

oc
us

es
 o

n 
di

ffe
re

nt
 

w
ay

s o
f c

om
pa

rin
g, 

co
ve

rin
g, 

an
d 

st
ru

ct
ur

in
g 

sp
ac

e: 
fr

om
 co

m
pa

rin
g 

siz
es

 o
f p

ap
er

, t
o 

co
m

pa
rin

g 
re

ct
an

gl
es

 co
m

po
se

d 
of

 u
ni

t s
qu

ar
es

, t
o 

co
m

pa
rin

g 
by

 co
un

tin
g 

ro
w

s o
f a

rr
ay

s; 
fr

om
 co

ve
rin

g 
by

 q
ui

lti
ng

 a
nd

 ti
lin

g, 
to

 co
ve

rin
g 

by
 fi

lli
ng

 in
 m

iss
in

g 
ro

w
s o

r c
ol

um
ns

 (o
r 

se
ct

io
ns

 o
f r

ow
s o

r c
ol

um
ns

) o
f a

n 
ar

ra
y;

 fr
om

 st
ru

ct
ur

in
g 

by
 p

ar
tit

io
ni

ng
 in

to
 su

br
eg

io
ns

, t
o 

st
ru

ct
ur

in
g 

by
 co

ve
rin

g, 
to

 st
ru

ct
ur

in
g 

by
 a

lig
ni

ng
 u

ni
ts

 a
nd

 cr
ea

tin
g 

ro
w

s a
nd

 co
lu

m
ns

 to
 

cr
ea

te
 a

rr
ay

s. 
A

ro
un

d 
ag

e 
7,

 a
 c

hi
ld

 c
an

 co
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er
ve

 a
re

a 
an

d 
re
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on

 a
bo

ut
 a

dd
iti

ve
 co

m
po

sit
io

n 
of
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, a

nd
 a

ro
un

d 
ag

e 
8,

 th
ey

 c
an

 m
ul
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lic

at
iv

el
y 

ite
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te
 sq

ua
re

s i
n 

a 
ro

w
 o

r c
ol

um
n 
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de
te

rm
in

e 
th
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ar
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 o

f a
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an

gl
e. 

Th
e 

tra
je
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y 
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r v
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e 

m
ea
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m
en

t m
ov

es
 fr

om
 d
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ly
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d 

th
en

 in
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re
ct

ly
 co

m
pa

rin
g 
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nt
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r c
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, t

o 
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in
g 

un
it 
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be

s t
o 

fil
l b

ox
es

, t
o 

st
ru

ct
ur

in
g 

3D
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e 
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g 
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it 
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be
s a

nd
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en
 u

sin
g 

m
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tip
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iv

e 
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ki

ng
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ut

 ro
w

s a
nd
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m
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 o

f u
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ts
. B

y 
ar

ou
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 a
ge
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, a

 c
hi
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 c

an
 d

et
er

m
in

e 
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lu
m

e 
of

 a
 p

ic
tu

re
d 

bo
x 

an
d 

th
en

 a
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x 

w
ith

 o
nl

y 
di

m
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ns
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en
 b

y 
m
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iv
el

y 
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g 
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its
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e 
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or
y 
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ng
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 a
nd
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ea
su

re
m

en
t, 
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se

d 
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e 
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sio
n 

of
 a

 ci
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le
, m
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es

 fr
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 b
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g 
an

d 
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in
g 
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es
, t

o 
m

at
ch

in
g 
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ng
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t a
ng

le
s (

in
cl
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in

g 
th

os
e 

th
at

 a
re

 p
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t o
f d

iff
er

en
t s
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s)
, t

o 
co

m
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rin
g 

an
gl

es
, a

nd
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na
lly

 to
 m
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rin
g 

an
gl

es
 b

y 
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e 
8+

.
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Ba
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et
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et
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(2
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9)
Ba
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t e
t a

l. 
ch

ar
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te
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e 
ea

ch
 su

cc
es

siv
e 

le
ve

l o
f t

he
ir 

le
ng

th
 tr

aj
ec

to
ry

 a
s i

nc
re

as
in

gl
y 

so
ph

ist
ic

at
ed

 a
nd

 in
te

gr
at

iv
e 

of
 p

rio
r l

ev
el

s, 
w

ith
 fa

llb
ac

k 
am

on
g 

le
ve

ls 
to

 b
e 

ex
pe

ct
ed

. Th
e 

hi
gh

er
 la

ye
rs

 in
di

ca
te

 in
cr

ea
sin

gl
y 

ab
st

ra
ct

 p
at

te
rn

s o
f r

ea
so

ni
ng

 th
at

 b
ec

om
e 

do
m

in
an

t o
ve

r 
tim

e. 
H

ow
ev

er
, t

he
 c

hi
ld

 re
ta

in
s e

ve
n 

th
e 

ea
rli

es
t l

ay
er

s o
f r

ea
so

ni
ng

 a
bo

ut
 m

at
he

m
at

ic
al

 
ob

je
ct

s, 
th

ou
gh

 th
ey

 a
re

 d
ec

re
as

in
gl

y 
en

ga
ge

d.
 Th

e 
tra

je
ct

or
y 

m
ov

es
 th

ro
ug

h 
a 

sp
ec

ifi
c, 

id
ea

liz
ed

 se
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en
ce

 o
f i

ns
tr

uc
tio

na
l a
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iti
es

 b
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ed
 o

n 
em

pi
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al
 a

cc
ou

nt
s o

f c
hi

ld
re

n’s
 re
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on

-
in

g 
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 th
ey

 w
er

e 
gu

id
ed

 th
ro

ug
h 

lo
ng

itu
di

na
l t

ea
ch

in
g 

ex
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rim
en

ts
; i

t d
es

cr
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es
 a

 h
ie

ra
rc

hi
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l 
se

qu
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ce
 o

f 1
0 

le
ve

ls,
 a

nd
 li

nk
s o
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er

va
bl

e 
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tio
ns

, h
yp

ot
he

siz
ed

 in
te

rn
al

 a
ct

io
ns

 o
n 

m
en

ta
l 

ob
je

ct
s, 

an
d 

in
st

ru
ct

io
na

l t
as

ks
 sp

ec
ifi

c t
o 

ea
ch

 le
ve

l. 
In

iti
al

ly,
 c

hi
ld

re
n 
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 g

eo
m

et
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 a

nd
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ng
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 to

 d
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e 
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 fr
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re
a 
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m
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y 
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m
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 c
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l o
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ra
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s s
w

ee
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on
g 

a 
lin

e 
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 p
ar

t o
f t

he
ir 

m
ea

su
rin

g 
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he
m

e. 
N

ex
t, 

st
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en
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ai

n 
un

it 
op

er
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an

d 
fin

d 
w

ay
s o

f k
ee
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ng
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n 

ex
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t c
or

re
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on
de

nc
e 

be
tw

ee
n 

co
un

tin
g 

an
d 

un
it 

ite
ra

tio
n 
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 th
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ex
te

nd
 in

di
re
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appendix b: ogap multiplicative reasoning framework—multiplication

OGAP was developed as a part of the Vermont Mathematics Partnership funded by the US Department of Education (Award 
Number S366A020002) and the National Science Foundation (Award Number EHR-0227057) 
© Vermont Institutes and Marge Petit Consulting, MPC 2009 Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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